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Preface

The life story of this book has been long and rather involved. It started with general
conversations about the ubiquitous nature of the questions ‘What is changing and by
how much?’ within environmental sciences, moved on to discussions about how some
of the newer, potentially more powerful and almost certainly more realistic statistical
approaches to answering such questions had not yet been translated over to the applied
sciences communities and then ultimately reached the ‘Wouldn’t a book be a good idea?’
stage. Many of those initial conversations were held around meetings organised by the
Environmental Statistics section of the Royal Statistical Society. Momentum was main-
tained subsequently through a series of training courses for environmental science PhD
students, loosely titled ‘Quantifying the environment’ and sponsored by the Natural Envi-
ronment Research Council. As always, having formulated our grand and ambitious plans,
the task of actually putting them into practice took much longer than we either hoped
or expected. So, now that we have finally reached our objective, we owe a huge debt
of thanks to all the staff at Wiley for their patience over more years than we care
to admit.

Many people have contributed to the discussions above. Others have helped by
responding constructively to our unsolicited requests for preprints or queries regarding
technical details of their research. With apologies that we cannot mention all of these peo-
ple by name, we take the opportunity here to thank all of them for their time and input.
In particular, some of the work described herein has developed from past PhD projects
co-supervised with Adrian Bowman at Glasgow, notably those of Andrew McMullan,
Marco Giannitrapani and especially Claire Ferguson: the review chapters in Claire’s PhD
thesis formed the nugget for some of the sections in Chapter 4. We are also grateful to
Rebecca Wilson at the University of Leicester, to Job Verkaik at KNMI and to Gavin
Simpson and Don Monteith at UCL, for providing the ozone, wind speed and alkalin-
ity data used in Part I of the book and for dealing with our queries with patience and
good grace.

The book is split into two parts: the first a textbook-style introduction to the area and
the second a collection of extended case studies demonstrating the practical application
of modern statistical approaches to the analysis of trends in real environmental studies.
These case studies have been chosen to span different environmental application areas as
well as to highlight different methodologies, statistical issues and styles of analysis. To
present this range and depth of material would not have been possible without the help
of our many collaborators and contributors, who have been most helpful and forgiving
throughout the long gestation of the book. To them we offer our warmest thanks and



xii PREFACE

appreciation. We hope that the final result of this collaborative effort will appeal both to
environmental scientists and to statisticians, and perhaps in a small way will encourage
further interaction and engagement between the two communities.

This book includes an accompanying website. Please visit www.wiley.com/go/
trend_detection for more information.

Marian Scott and Richard Chandler
Glasgow and London
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1

Introduction

All scientific investigations are concerned with obtaining a deeper understanding of the
world in which we live. Such investigations may be motivated primarily by curiosity,
but more often by a recognition that such an understanding is beneficial to the wellbeing
of humanity. Environmental science is an area where many would argue that the current
level of knowledge pales into insignificance beside the capacity to enact rapid changes
on an unprecedented scale, and therefore that it is not only beneficial but essential to
understand more clearly the processes at work. Examples of current concerns include the
response of climate to greenhouse gas emissions and the knock-on effects in areas such
as water resources, agriculture and human health; the effects of industrial activity upon
the quality of air and drinking water; the implications of intensive agricultural practices
for biodiversity; and the sustainability of industrial-scale fishing operations. In all of
these examples, the most compelling grounds for concern are observational: increases in
global mean temperatures and various indices of extreme weather (Solomon et al., 2007),
increases in the incidence of respiratory diseases associated with particulate matter in
the atmosphere (Anderson et al., 1996; Zmirou et al., 1998), declines in the numbers of
farmland birds in Europe (Siriwardena et al., 1998) and shrinking fish catches (Pauly
et al. 2002), to cite just a few examples.

Broadly speaking, to develop an understanding of such phenomena there are two
possible approaches. The first is to consider the fundamental processes that are believed to
be operating and to build a more or less detailed model of these processes that can be used
to make predictions and explore alternative scenarios. Examples of this ‘process based’
approach include the physical and chemical models of the atmosphere and oceans that
are routinely used to provide projections of the earth’s climate throughout the twenty-first
century (Saunders, 1999; Solomon et al., 2007).

The second approach is to analyse the available data, either to look for relationships
that could explain how the system works or to test hypotheses suggested by process based
considerations. ‘Trend analysis’ can be defined as the use of such an empirical approach

Statistical Methods for Trend Detection and Analysis in the Environmental Sciences , F ir st Edition.
Richard E. C handler and E. Maria n S cott.
©  2011 John Wiley & Sons, Ltd. P ublishe d 2011 by John Wiley & Sons, Ltd. ISBN: 978-0-470-01543-8



4 METHODOLOGY

to quantify and explain changes in a system over a period of time.1 The statistical tools
required to carry out a trend analysis range from the simple to the very advanced. However,
the complexity of most environmental systems, often coupled with difficulties in making
accurate observations, ensures that simple methods are rarely adequate for more than a
preliminary inspection of the data. At best, such methods may fail to extract all of the
available information (which, given the cost of obtaining much environmental data, is
a waste of resources) and, at worst, they may yield misleading conclusions. To avoid
these pitfalls it is therefore usually necessary to use more advanced methods, such as
those described in the following chapters. Many of these have been developed relatively
recently, and therefore are unlikely to be encountered in a traditional introductory statistics
course for environmental scientists. However, all of them are well established in the
statistical literature and have been found to be useful in a wide variety of applications.
Furthermore, many of them can be implemented easily using freely available software.

Before proceeding any further, it is worth clarifying the subject matter of the book
by defining what is meant by a ‘trend’, examining some of the questions that might lead
one to carry out a trend analysis and summarising some of the difficulties and features
that are commonly encountered in the analysis of environmental data. The stage will then
be set for the statistics.

1.1 What is a trend?

We have already defined trend analysis as the investigation of changes in a system over a
period of time. However, this is rather a loose definition. The use of quantitative methods
requires a precise statement of the scientific question(s) of interest, framed in numerical
terms. We therefore consider the behaviour of a system to be encapsulated by the values
of some collection of numeric variables (for example the mean global temperature or the
numbers of reported incidents of respiratory illness in a particular location) through time.
In the simplest case, the data available for the analysis of such a system might consist of a
sequence of regularly spaced observations of a single variable taken at equal time intervals:
y1, . . . , yT , say. Such data are often analysed using time series analysis techniques. In
the time series literature, definitions of trend often refer to changes in the mean level of
such a series. Chatfield (2003) defines trend in almost exactly these terms: ‘[Trend] may
be loosely defined as “long-term change in the mean level”. ’ Kendall and Ord (1990)
describe trend as ‘long-term movement’ – again implying a change in the mean level.

Most modern statistical methods require that an observed sequence y1, . . . , yT is
regarded as the realised value of a corresponding sequence Y1, . . . , YT of random vari-
ables. Equivalently, if all of the observations are assembled into a single column vector
y = (y1 · · · yT )′ (here and elsewhere, a prime ′ is used to denote the transpose of a vector or
matrix), then y is considered to be the realised value of a random vector Y = (Y1 · · ·YT )′.
This viewpoint, although perhaps surprising when seen for the first time, enables scien-
tific questions to be framed, in completely unambiguous terms, as questions about the
probability distribution from which the observations were drawn. Consider, for example,

1 The term ‘trend’ is also sometimes used to describe the variation of some quantity over a
spatial region. In general, the analysis of spatial variation requires different techniques to that of
temporal variation: it is therefore not the primary focus of this book. However, tools for the analysis
of space–time data are considered briefly in Section 6.1, and several of the contributions to Part II
consider both spatial and temporal variation.
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the expected values of the random variables Y1, . . . , YT :

E (Yt ) = μt , say (t = 1, . . . , T ). (1.1)

where μt can be thought of as an ‘underlying’ mean of the process at time t . In some
sense then, the sequence μ1, . . . , μT provides a formal mathematical representation of
the notion of ‘change in the mean level’, and this sequence itself could be defined as
the trend as in Diggle (1990, Section 1.4). If this definition of trend is accepted then,
for example, the rather vague question ‘Is there a trend in my data?’ is equivalent to the
much more precise ‘Are μ1, . . . , μT all equal?’.

Although the concept of trend as ‘change in the mean level’ is ubiquitous in the time
series literature, it is not universal in the environmental sciences. For example, Robson
(2002) distinguishes between ‘trend’ and ‘fluctuation’:

A data series is said to show trend if, on average, the series is progressively
increasing or decreasing. A data series shows fluctuation if the average of a
series changes noticeably through time but not in any consistent direction.

Furthermore, environmental problems are not always focused upon the average behaviour
of a process. For example, one may be interested in assessing changes in the frequency
of ‘extreme’ events such as large floods or dangerously high air pollution episodes. To
define ‘trend’ solely in terms of mean levels therefore seems unnecessarily prescrip-
tive: long-term changes in any statistical properties are potentially of interest. However,
the exact meaning of ‘long-term’ depends upon the application: a climatologist would
probably regard a couple of degrees’ rise in global mean temperature over a period of
decades as convincing evidence of a warming trend, whereas a geologist may regard this as
uninteresting by comparison with changes in the frequency and severity of glacial epochs.

On the basis of these considerations, we offer the following definition as the focus of
the statistical methods to be discussed in this book:

Definition
‘Trend’ is long-term temporal variation in the statistical properties of a process, where
‘long-term’ depends on the application.

1.2 Why analyse trends?

As indicated above, the use of quantitative methods requires that the objectives of an
investigation are specified precisely. In general, the choice of an appropriate analysis
method will depend upon the questions of interest. It is therefore worth considering
the kinds of situation in which an analysis of trend might be useful. In environmental
applications, possible reasons for carrying out a trend analysis include:

(a) To describe the past behaviour of a process. For example, it may be of interest
to quantify the nature and extent of changes in a region’s climate, or in some
wildlife population, over a period of time.

(b) To try and understand the mechanisms behind observed changes. A common goal
is to determine whether, or to what extent, such changes are associated with
human activity rather than ‘natural’ processes.
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(c) To make assessments of possible future scenarios, by extrapolating past changes
into the future. Such extrapolations are often used to assess the risk of future
adverse events such as severe floods or species extinction, and also to justify
the introduction of policies designed to reduce this risk if it is judged to be
unacceptably high.

(d) To monitor the effectiveness of environmental control policies. For example, if
new controls are introduced to limit industrial emissions, it may be of interest to
determine the extent to which a response can be detected in river chemistry and
aquatic ecosystems.

(e) To enable the analysis of systems where long-term changes serve to obscure the
aspects of real interest. For example, an ecologist may be interested in studying
the interactions between several species that have been steadily increasing or
decreasing in abundance due to some ‘external’ factors; in this case, a first step
in the analysis may be to identify and remove the trends so as to see more clearly
the species interrelationships.

Such objectives are not unique to environmental applications, of course; however, some
of them have perhaps a more central role here than in other areas.

To illustrate some of the issues that may arise in an environmental context, we now
consider some simple examples that will be used for illustrative purposes throughout Part
I of the book.

1.3 Some simple examples

1.3.1 Dutch wind speeds

Our first example relates to records of hourly wind speed from 13 weather stations in the
Netherlands, provided by the Royal Netherlands Meteorological Institute (KNMI). The
station locations are shown in the left-hand panel of Figure 1.1. Record lengths range from
41 years (at both Beek and Hoek van Holland) to 53 years (at Schiphol); all records ran
until the end of 2002 and have been carefully quality controlled and standardised using
procedures described in Verkaik (2000a, 2000b). During the quality control procedure,
some hourly readings were identified as suspect; some are also missing. The sites with
the highest proportions of missing or suspect readings are IJmuiden (3.2 %), Hoek van
Holland (0.75 %), Deelen (0.05 %) and Gilze Rijen (0.04 %). None of the remaining sites
has more than 25 missing or suspect hourly readings during the entire period of record.

We highlight two applications in which the study of these data may be of interest.
The first relates to engineering risk assessment. Much of the Netherlands is below sea
level and is protected from inundation by dikes. The main cause of dike failure is wave
damage, which itself is primarily associated with a combination of storm surges and high
wind speeds (Ettema, 2001). An assessment of the wind climate of the country is therefore
essential for ensuring the safety of dike systems.

The second application relates to the search for renewable energy sources. Wind power
is increasingly being seen as a cheap alternative to fossil fuels. However, to provide a
dependable energy supply wind speeds must be high enough to generate the required
output, but not so high as to necessitate shutting down the turbines for safety reasons.
To determine the long-term viability of a wind power scheme in an area therefore, an
analysis of wind speed would be helpful.
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Figure 1.1 Left: locations of Dutch weather stations yielding wind speed data. Right:
annual mean wind speeds for two of the stations, 1961–2002 (dashed lines indicate series
means).

In both of these applications, it is clearly of interest to detect and quantify trends
in wind speeds – and also, if possible, to produce useful extrapolations into the future.
The objectives of a trend analysis may therefore be summarised under points (a)
to (c) in Section 1.2. In an engineering risk assessment, the focus will be primarily
upon the frequency of occurrence of extremely high winds; however, for wind power
evaluation both high and low winds will be of interest. Motivated by such considerations,
Smits et al. (2005) analysed the data considered here, examining trends in the annual
numbers of ‘events’ of varying degrees of severity and reporting overall decreases in the
frequency of high severity events between 1962 and 2002, although a couple of stations
showed increases.

As a simple first step in examining these data, the right-hand panels of Figure 1.1
show the annual mean wind speeds at two of the stations from 1961 to 2002. The graph
for De Bilt suggests a decrease over this period; however, there appears to be an upward
trend at Eelde, at least from 1960 to the mid 1980s. Both of these findings are in line
with the results of Smits et al. (2005, Figure 5), although the analysis here is slightly
different since Figure 1.1 is concerned with mean wind speed whereas those authors
studied trends in ‘severe’ events. In general, it is unwise to overinterpret the results of
simple visual inspections; nonetheless, it is worth noting the possibility that trends may
vary over the region.
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Figure 1.2 Annual North Sea haddock biomass, 1963–2000. (a) Biomass time series
(Yt ), (b) time series of ratios (Yt/Yt−1), (c) observed time series 1980–2000, along with
95 % prediction intervals to 2010 obtained using model (1.2), (d) observed time series
1980–2000, along with 95 % prediction intervals to 2010 obtained using model (1.3).
Logarithmic scales are used for the y axis in (a) and (b), but not in (c) and (d).

1.3.2 North Sea haddock stocks

Figure 1.2 shows some plots relating to annual estimates of spawning stock biomass for
North Sea haddock, from 1963 to 2000. These data are from DEFRA (2004). The biomass
estimates are based on mathematical models that combine information from international
catches and fishing activity, along with research vessel surveys. Over time, there has
been some variability in the quality of the data available for fish stock assessments.
Furthermore, care needs to be taken when analysing ‘data’ that are themselves produced
by a model. A complete analysis of the haddock stocks data would need to account both
for the variability in data quality and for the properties of the model used to produce the
data, in order to avoid overinterpreting artefacts that may be caused by either of these
features (see Section 1.4.4 below). Nonetheless, for illustrative purposes in the first part
of the book we will take these data at face value.

Biomass data are used in fisheries management to address, among other things,
questions regarding the sustainability of current levels of fishing activity. Interest
therefore lies in producing assessments of future biomass, as well as in trying to quantify
the effect of fishing activity upon stocks. It is also potentially of interest to identify
responses to past changes in the management of the fishery, since the nature of such
responses can be used to guide future management strategy. These objectives can be
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summarised under points (a) to (d) in Section 1.2. We will introduce the analysis by
looking at some simple future scenarios.

Figure 1.2(a) is a time series plot of the annual stock biomass time series from 1963
to 2000, in thousands of tonnes. A logarithmic scale has been used for the y axis. This
is equivalent to plotting the logged biomass time series; the only difference is that the
axis is labelled in the original measurement units (which are easier to interpret than their
logarithms). The plot shows an apparent linear decrease over the period of record, with
constant variation about this overall linear trend. This in turn suggests that the series could
be represented using a linear regression model for log biomass:

log Yt = β0 + β1t + εt , (1.2)

where Yt is the biomass in year t and εt is an ‘error’. Linear regression models rely on
the assumptions that the errors are drawn independently from normal distributions with
mean zero and constant variance. We will see in Chapters 3 and 5 that for this particular
data set, all of the assumptions seem to be satisfied except that of independence. The
dependence between the errors can, however, be represented via a model of the form

εt = φ1εt−1 + φ2εt−2 + δt ,

where δt is a sequence of independent, normally distributed random variables with zero
mean and constant variance, and φ1 and φ2 are extra parameters. Taking time t = 1 at the
time of the first observation in 1963 and considering only data up to 2000, the coefficient
estimates for this model are β̂0 = 5.977, β̂1 = −0.034, φ̂1 = 0.996 and φ̂2 = −0.584.

An alternative strategy for analysing these data is to study the proportional increase
in biomass between years t − 1 and t :

Rt = Yt/Yt−1.

In a stable population, the ratio Rt is expected to fluctuate around the value 1. Figure 1.2(b)
shows the values of these ratios from 1964 to 2000, again on a logarithmic scale. No
ratio can be computed for 1963, because data for 1962 are not available. The series does
indeed appear to fluctuate around 1 and, apart from a couple of points at the beginning
of the series, shows fairly constant variability on the log scale. In Chapter 5, it is shown
that the model

log Rt = 0.493 log Rt−1 − 0.660 log Rt−2 + zt

provides a good fit to the ratios. Here, (zt ) is another sequence of independent, nor-
mally distributed random variables with zero mean and constant variance. Since log Rt =
log (Yt/Yt−1) = log Yt − log Yt−1, this model can be rewritten in terms of the actual
biomass values as

log Yt = 1.493 log Yt−1 − 1.153 log Yt−2 + 0.660 log Yt−3 + zt . (1.3)

In Chapter 5, we will see that models (1.2) and (1.3) both provide an excellent fit to the
biomass time series; indeed, on the basis of these data it is very difficult to distinguish
between them. However, the models have very different interpretations. The first asserts
that over the period of record, biomass has followed a deterministic trend which is linear
on the log scale. By contrast, there is no such deterministic component in the second
model: here, the current year’s biomass is seen as an adjustment to that of the previous



10 METHODOLOGY

year, so that any apparent pattern in the observed series is simply an accumulation of
year-to-year variation.

The differences between the models are emphasised emphatically when they are used
to make future projections. The bottom plots in Figure 1.2 show the last 20 years’ obser-
vations, along with 95 % prediction intervals for each year from 2001 to 2010 under each
model. The plots are drawn to the same scale and do not use logarithmic scaling for the
y axes. This emphasises the practical differences between the models: (1.2) implies a
continuing gradual decrease in the spawning stock, whereas the prediction intervals from
(1.3) encompass scenarios ranging from a more rapid decrease to a population explosion.
These differences should cause concern about the use of either model for extrapolation;
we will see later on that such concerns are well founded.

This example illustrates nicely the difficulties of extrapolation. We have two models,
which both fit very well to the data, but which yield radically different views of the
future and hence carry different implications for fishery management. Of course, what
is lacking in the analysis so far is any consideration of mechanisms that are known to
affect the biomass – the models are purely descriptive. If a model could be built linking
biomass to some index of fishing effort, for example, one might have much more faith in
its predictions. This idea is pursued later in the book.

1.3.3 Alkalinity in the Round Loch of Glenhead

Since the mid 1980s it has been widely accepted that industrial emissions of, in particular,
oxides of sulfur and nitrogen can be associated with the acidification of freshwater bodies
and consequent damage to the associated ecosystems; see, for example, Battarbee et al.
(1985). Recognising this, international agreements have led to substantial reductions in
sulfur dioxide emissions in many countries since 1980. To monitor the response of water
bodies to these emissions reductions in the UK, the United Kingdom Acid Waters Mon-
itoring Network (UKAWMN) was set up in 1988 (Monteith and Evans, 2001). Water
samples are taken at regular intervals from 11 lakes and 11 streams, representing some of
the more acid sensitive freshwaters in the UK; these are then subject to chemical analysis.

Figure 1.3 shows some data from one of the UKAWMN sites, the Round Loch of
Glenhead in southwest Scotland. At this site, samples are taken at roughly three-month
intervals; the data in Figure 1.3 run from March 1988 to June 2002. Although there
is some variation in the interobservation times, most of them are sufficiently close to
three months that the series can be regarded as regularly spaced for practical purposes.
The main variable of interest is alkalinity, defined as the capacity of water to neutralise
an acid and measured in microequivalents of calcium carbonate per litre (μeq l−1). The
alkalinity series in Figure 1.3 shows pronounced seasonal oscillation, with a fairly clear
increase from 1996 onwards. It is of interest to determine whether this is a response
to declining sulfur emissions. This could, in principle, be investigated by relating the
alkalinity measurements to sulfur emissions from nearby industrial areas. Unfortunately,
however, emissions data are not available at a fine enough scale to support such an
analysis. Instead, therefore, sulfate concentrations in the water samples have been taken
as a surrogate for sulfur deposition. This introduces a further complication: as well as
industrial sulfur emissions, sulfate can be introduced as a neutral salt in sea-spray, which
reaches the Round Loch in small quantities since the site is only around 30 km from
the coast. The influence of marine deposition at this site is confirmed by the presence of
chloride ions in the water; there is no other plausible explanation for these. Assuming that
the chloride is entirely marine-derived, the amount of sulfate from marine sources can be
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estimated according to the known ratio of sulfate to chloride in sea water (Evans, Monteith
and Harriman, 2001). The remainder is taken as a surrogate for industrial sulfur deposition.
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Figure 1.3 Quarterly time series of alkalinity, sulfate and chloride concentrations and
meteorological variables at the Round Loch of Glenhead, 1988–2002.

The second panel of Figure 1.3 shows the quarterly time series of both chloride and
nonmarine sulfate at the site. The sulfate series appears stable until about 1996, and
declines thereafter; this seems consistent with the trend in alkalinity already observed,
although the sulfate series shows no obvious seasonality. The chloride series in this
panel is of interest because marine deposition has other effects besides the introduction
of additional sulfate (Evans, Monteith and Harriman, 2001). It may therefore be worth
determining whether there is any relationship between alkalinity and chloride. A quick
inspection reveals that the main feature of the chloride series is a period of enhanced
deposition during the early 1990s, as well as some indication of seasonality. These are both
probably associated with increased rates of marine deposition when weather conditions
are favourable.

Weather conditions themselves control surface water chemistry in a variety of ways:
for example, weathering rates are dependent on both temperature and rainfall. The bottom
two panels in Figure 1.3 show quarterly time series of temperature and rainfall from a
weather station 3 km from the Round Loch, for the same period as the water chemistry
data. The original data were daily; each temperature in Figure 1.3 is an average over the
91 days prior to sampling, and the corresponding rainfall is a total over the same period.
Both series show pronounced seasonality. Apart from this, the temperatures appear fairly
stable. The rainfall series, on the other hand, seems to show a sudden drop in the second
half of 1996, with a subsequent gradual recovery to the initial level except for an unusually
dry summer in 2001.



12 METHODOLOGY

The primary motivation for this analysis is to determine whether there have been any
significant changes in alkalinity at this site, and if so whether they are associated with
reductions in industrial sulfur deposition. Clearly, however, the processes controlling
alkalinity are complex and it is necessary to disentangle the relative contributions of
weather, marine deposition and industrial deposition before we can answer the questions
of primary interest. The objectives of the study can therefore be summarised under points
(a), (b) and (d) in Section 1.2. The example has been chosen to illustrate a situation
in which it is important to discriminate between the effects of different factors upon a
quantity of interest. In Chapter 3, we show that rainfall and temperature are strongly
associated with alkalinity, as is chloride; however, the existence of a relationship with
sulfate is more difficult to establish.

1.3.4 Atmospheric ozone in eastern England

Ozone (O3) is generated in the lower atmosphere as a result of reactions between hydrocar-
bons (generated from the burning of fossil fuels) and oxides of nitrogen (NOx), triggered
by exposure to ultraviolet radiation. Ozone is known to pose risks to human health and to
be associated with increases in mortality (Anderson et al., 1996); it also damages crops
and vegetation (Fowler et al., 1999). It has been identified as a greenhouse gas, with the
potential to influence climate change as well as air quality (AQEG, 2007). As a result,
many countries and organisations have defined targets that aim to limit atmospheric ozone
concentrations for the protection of human health and vegetation. In the European Union
(EU), for example, Directive 2008/50/EC of the European Parliament sets ozone targets; it
also specifies that member states must collect, exchange and disseminate air quality infor-
mation. Furthermore the World Health Organisation has issued its own recommendations
(WHO, 2000) regarding levels of ozone exposure.

Against this background, the EU-funded GEOmon project2 aims to collate data on
various atmospheric pollutants including ozone, from a network of sites across Europe.
Data from different locations have been ‘harmonised’ to ensure that they are comparable
(Henne and Fleming, 2008). Figure 1.4 shows a specimen series from one of these sites, the
Weybourne Atmospheric Observatory in eastern England. The series is at a daily timescale
and runs from January 1989 to December 2008. However, the measurement station was
resited in 1992, to a location around 2 km from its original position. This may have induced
some inhomogeneity in the series, although the data harmonisation should have alleviated
the problem to some extent. As with the haddock stocks example in Section 1.3.2, we
will take these data at face value for illustrative purposes. For more details of the data
and measurement station, see Penkett et al. (1999) and Fleming et al. (2006).

Each daily value in Figure 1.4 is an average of eight readings, taken at hourly inter-
vals from 09:00 to 16:00 GMT. However, there are extended periods during which the
station did not operate due to shortage of funding and many other days where one or
more hourly readings are missing for a variety of reasons including instrument error,
meteorological effects or contamination. In Figure 1.4 and all subsequent analyses, data
have been used only for days with a full set of eight hourly readings. This is to avoid
introducing artificial inhomogeneities, affecting variability in particular, by calculating
daily means from different numbers of observations. In principle, such artefacts could be
accounted for within a statistical analysis; however, by restricting attention here to days
with complete data we aim to keep things reasonably simple. As a result, a total of 2821

2 See http://www.geomon.eu.
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Figure 1.4 Daily ozone concentrations (parts per billion volume, ppbv) at Weybourne,
Norfolk, 1989–2008. Dashed line indicates mean of available observations.

of 7305 daily readings are missing from the record as analysed here: Figure 1.4 shows the
missing periods clearly. It also shows pronounced seasonality, with highest values in the
summer months and an apparent decreasing trend in extreme ozone levels in particular.
Overall levels seem particularly high during 1998 and 1999. However, there are many
missing values during this period and it is possible that the available measurements are
concentrated during the summer months when ozone levels are naturally high: thus the
large proportion of missing data makes the plot difficult to interpret.

As discussed above, there is considerable interest in monitoring ozone levels across
Europe, as well as in other parts of the world. With respect to Figure 1.4, questions
include whether or not there are trends in the data, and if so whether these can be
related to legislation that is designed to limit pollutant emissions and hence reduce ozone
concentrations in the long term. These correspond to objectives (a) and (d) in Section 1.2.
The mechanisms of ozone formation suggest that emissions reductions should lead in
particular to declines in summer ozone peaks. Conversely, reductions in NOx emissions
are thought to create conditions that are more favourable for ozone formation during the
winter months; one might therefore expect increasing ozone trends in winter. Figure 1.4
suggests that there is indeed a gradual decline in peak ozone values over time, although
any trends during winter are not immediately apparent. Given that the seasonality is of
particular interest, it would be useful to be able to extract a ‘seasonal’ component from
the data so as to visualise any changes more clearly. From this perspective, other features
of the data – such as irregular episodes or long-term changes in the mean level – may be
seen as a nuisance that obscures some of the structure of interest. Thus, objective (e) in
Section 1.2 is also relevant: if we can identify any overall trend in the data, we can then
remove it and examine the seasonal cycle in more detail.
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This example has been chosen primarily because it provides an opportunity to illustrate
methods for the analysis of series with large proportions of missing data. This situation
is not uncommon in environmental applications.

1.4 Considerations and difficulties

The examples above highlight some features that are commonly encountered in
environmental studies. These include missing or irregularly spaced observations, data
quality issues due to measurement difficulties and the analysis of data from a network of
sites. The need to accommodate such features will often be an important consideration
when determining an appropriate strategy for analysis, along with several other issues
of a statistical nature. We here outline some of the issues that will be discussed in
greater depth later in the book. For a perspective on wider considerations that might
be relevant in any statistical investigation, the excellent review by Cox (2007) is
strongly recommended.

1.4.1 Autocorrelation

Most ‘standard’ statistical techniques assume that the available data can be regarded,
at some level, as an independent random sample from a ‘population’ of interest. This
assumption is critical to the construction of standard hypothesis tests and confidence
intervals. Of necessity, however, a trend analysis invariably relies upon the analysis of
time series data and, in general, successive observations in a time series will not be
independent. Consider, for example, a time series of hourly wind speeds from one of the
Dutch weather stations in Figure 1.1. High wind speeds are associated with storms that
may last for several hours or even days: therefore, if the wind speed at 9 a.m. today is
much higher than average for the time of year, it is likely that the wind speed at 10 a.m.
will also be higher than average.

Dependence between successive observations in a time series is referred to as
‘autocorrelation’. In practice, autocorrelation is mostly (but not always) positive, as in
the wind speed example: high and low values tend to cluster together more than would
be expected in an independent sequence. This clustering can sometimes be mistaken
for a trend, especially in relatively short series. A more sophisticated view is that a
positively autocorrelated sequence contains less information than the same number of
independent observations, so that the ‘effective sample size’ is reduced in the presence
of positive autocorrelation. Therefore, techniques based on independent observations will
tend to overestimate the precision with which quantities of interest can be estimated. To
see this, consider a ‘perfectly autocorrelated’ sequence y1, . . . , yT in which y1 is drawn
from some probability distribution and then y2 . . . , yT are all set equal to y1 – there is
clearly only one observation’s worth of information here.

There are several simple ways to account for autocorrelation in ‘standard’ analyses
(for example by studying annual rather than hourly wind speed series because successive
annual values are likely to be effectively independent). In general, however, it is preferable
to use analysis methods that are specifically designed for use with autocorrelated data.
Several such methods will be described in this book: the fact remains, however, that to
discriminate between long-term changes and the effects of autocorrelation is often one of
the most difficult tasks in a trend analysis.
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1.4.2 Effect of other variables

Environmental processes do not evolve in isolation. To some extent, therefore, it is not
possible to study any environmental variable without considering other aspects of the
system to which it belongs. In a trend analysis, failure to do this may lead to genuine
trends remaining undetected because they are ‘masked’ by the effects of other variables;
or to uninteresting trends being identified because they are merely a response to changes
in another variable. The Round Loch water chemistry study in Section 1.3.3 is a good
example of this, since trends in the alkalinity of the loch could conceivably be ascribed
to changes in industrial emissions, to changing weather conditions or to changes in the
frequency of marine deposition events.

The need to allow for competing explanations of an observed trend is fairly obvious.
The potential of other variables to obscure trends is perhaps slightly less so. Essentially,
the problem is that trends usually contribute a relatively minor amount to the overall vari-
ability of a process, by comparison with other factors such as seasonality. ‘Unexplained
variability’ is effectively synonymous with ‘uncertainty’ – hence, unless known sources
of the variability in a process are acknowledged explicitly, it becomes difficult to make
definitive statements about other aspects.

Broadly speaking, there are two ways of accounting for the effects of other variables
in an analysis. The first, sometimes referred to as normalisation , is to adjust the variable
of interest in some way beforehand. The second is to carry out inference within the frame-
work of a statistical model that explicitly represents the possible effects of all relevant
factors simultaneously. Normalisation is often used to adjust for seasonality. For example,
when analysing a monthly series containing a strong seasonal cycle, a crude procedure
(which is not generally to be recommended except for very preliminary purposes, for
reasons that will be explained later) is to estimate the seasonal cycle by calculating the
mean for each month of the year and to subtract this estimated cycle from the data prior
to further analysis.

1.4.3 Lack of designed experiments

The emergence of statistical science as a serious discipline in its own right is generally
credited to the work of Karl Pearson, Ronald Fisher and others in the first quarter of
the twentieth century. The techniques developed at this time include procedures such as
the Student t test, use of the correlation coefficient to quantify and test for association,
maximum likelihood estimation and the analysis of variance. These techniques have found
their way into almost all areas of quantitative investigation. It is worth bearing in mind,
however, that many of them were originally intended for use in very specific and relatively
simple situations. To illustrate this, consider the comparison of two groups of observations
obtained under experimental conditions that are, as far as possible, identical except for a
single factor of interest. Here, it is plausible to write down a mathematical model for the
probability distributions generating the data and to postulate that the scientific question
of interest (‘Does the factor of interest have any effect on the outcome?’) is directly
equivalent to a question about these probability distributions (for example, ‘Do they have
different means?’). The most common approach to this problem is the hypothesis test:
simplify the model by assuming that the two distributions have the same mean, and
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determine whether or not the data are consistent with this simpler model. If not, it is
concluded that the factor of interest has a genuine effect upon the outcome.

The argument above is fairly standard in introductory statistics texts and courses,
and underpins all hypothesis testing procedures. The basic principle is to compare a
‘simple’ mathematical model with an ‘extended’ version; evidence against the former
is then regarded as evidence in support of the latter. However, this logical step is not
always valid. Strictly speaking, if the data are not consistent with the simpler model
then all we can conclude is that the simpler model may be incorrect. In the example
above, the experiment is constructed in such a way that the most plausible alternative
explanation is that the factor of interest affects the outcome. In many environmental
problems, however, it is not possible to construct experiments in this way (Fisher’s work
on the design of agricultural experiments in the 1920s is a notable exception) and analyses
are often restricted to available data that may have been collected for an entirely different
purpose. Moreover, even if experiments can be designed it is not always possible to
follow the protocol exactly: Manly (2001) gives examples of this, as well as a good
discussion of general design issues for environmental applications. Finally, the complexity
of environmental processes ensures that no model can truly capture the mechanism that
generated the data – hence any ‘simple’ model is almost guaranteed to be incorrect!

It would be unduly pessimistic to conclude from this that hypothesis tests and other
conventional statistical techniques have no place in environmental investigations. It should
be clear, however, that the results of such procedures need to be interpreted carefully and
thoughtfully: statistical methods (and hypothesis tests in particular) should not be regarded
as a universal panacea for answering questions of interest. For example, it is not uncom-
mon to see an analysis of trends over some region, in which a test for trend has been
performed at different locations and a map has been produced showing the areas where
‘significant’ trends have been found. The implication of such a map, intentional or not,
is that trends exist in these areas but not elsewhere. In reality, of course, it is much more
likely that there are trends everywhere but that they vary over the region: if a trend is statis-
tically insignificant at a particular location, this merely indicates that it is relatively weak.

1.4.4 Consideration of auxiliary information

All statistical analyses are designed to assist in the interpretation of data. Most ‘classical’
procedures operate by taking the recorded values of variables of interest, carrying out some
mathematical operations on these values and producing summary information (such as
regression coefficients and p-values) that can be interpreted by the analyst. By definition,
the conclusions from such analyses are limited to the information contained in the values
analysed. However, these values rarely tell the whole story: they are often accompanied
by different types of auxiliary information. This might involve aspects of data quality (for
example the knowledge that measurements have been obtained using a variety of different
techniques), as well as a more or less detailed understanding of the process being studied.

A simple (nonenvironmental) example serves to illustrate the potential usefulness of
auxiliary information. Suppose we wish to determine the probability that a tossed coin
will show heads. The coin is tossed 10 times and six heads are obtained. On the basis
of these data alone, the estimated probability of obtaining heads is 0.6; the associated
standard error is 0.076, so that an approximate 95 % confidence interval for the true
underlying probability is 0.6 ± (1.96 × 0.076) = (0.45, 0.75). Few people would accept
that this confidence interval provides a realistic assessment of uncertainty in this example:
centuries of experience, along with the geometry of the situation (a coin is effectively
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symmetric so there is no reason to prefer one side over the other), suggest that the
probability of obtaining heads is extremely close to 0.5 for most coins. It would be
extremely useful to be able to incorporate such information into an analysis.

Of course, environmental problems are much more complex than this. Nonetheless,
there are few (if any) cases where the investigator has no understanding of the processes
involved prior to seeing the data. In many applications, process based models (discussed at
the beginning of this chapter) provide a particularly rich source of auxiliary information.
Of course, these models are themselves approximations of reality, and different process
based models of the same system can yield rather different outputs (see, for example, the
projections of global mean temperature produced by different climate models in Meehl
et al., 2007). It is clear, therefore, that neither statistical models based solely on measure-
ments nor process based models based primarily upon physics and chemistry can provide
a complete solution to a given problem. In many application areas, it is increasingly being
recognised that there is a need for better integration of the two modelling approaches.

In very simple terms, the main challenge in developing an integrated modelling
approach is to determine the relative importance to be attached to each source of infor-
mation (in the coin-tossing example, most people would attach much more importance to
their prior understanding of coins than to the observations from a small number of tosses).
In fact, this is the main issue to be confronted when dealing with any type of auxiliary
information – for example, if some observations are known to be more accurate than oth-
ers then it is natural to give them more ‘weight’ in an analysis. Some types of auxiliary
information can be accommodated straightforwardly, for example by using an appropri-
ate criterion to attach explicit weights to each observation according to its accuracy. In
general, however, more sophisticated techniques may be required. In particular, Bayesian
methods provide an appealing conceptual framework within which to represent the rela-
tionships between different sources of information, as well as the uncertainties involved.

1.4.5 The necessity of extrapolation

In Section 1.2, it was noted that one possible reason for carrying out a trend analysis is
to gain some insight into the future. Of course, no observations are ever available beyond
the present. We are not the first to note that it can be dangerous to stray beyond the
limits of the available data – indeed, elementary statistics courses and texts invariably
carry a strong warning against doing so. If insight into the future is required, however,
extrapolation beyond the available data is unavoidable. It would hardly be appropriate to
argue that the design of flood defences is futile because it is dangerous to assess future
flood risk on the basis of past observations! What is appropriate, however, is to recognise
the difficulty of the problem and to proceed extremely carefully when using statistical
(or, indeed, any other) methods for extrapolation purposes. A particular challenge is to
quantify, reliably and credibly, the uncertainty associated with an extrapolation or forecast.

Quantitative extrapolation, and assessment of the associated uncertainty, is invariably
based on models. The main reason for this is that the only alternative is to make a more or
less educated guess. However, there are two difficulties with model based extrapolation.
Firstly, as in the haddock stocks example described in Section 1.3, there will usually
be many models that provide apparently reasonable descriptions of the available data,
but that have very different implications for the future; and, secondly, there is always a
danger of unforeseen future changes to the system that invalidate the current model. It
is almost guaranteed that any model will fail at some point in the future since, as noted
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previously, a model is at best an approximation to a complex system. In this context,
careful modelling involves:

• Incorporating, as far as possible, knowledge of the mechanism that generated the
data, particularly if there are grounds for believing that this mechanism will remain
largely unchanged in the future. For example, fishing activity in the North Sea
is the primary driver of trends in fish stocks there. Relationships between fishing
activity and population growth can be deduced from simple principles that may be
expected to hold quite generally (Haddon, 2001); confidence in extrapolations will
be increased if they use these relationships.

A potential difficulty with this approach is that to derive extrapolations for the
variables of interest, it is necessary to know the future values of other variables as
well (in the example above, to forecast fish stocks it will be necessary to know about
future fishing activity). There are two potential solutions to this problem. The first
is to exploit relationships with variables that can, in principle, be controlled – this
enables a variety of scenarios to be presented (the consequences of different fishery
management options could be compared, for example). The second is to exploit
relationships with variables for which ‘trusted’ extrapolations exist. This is the basis
of ‘downscaling’ in climatology (Wilby and Wigley, 1997), in which the aim is
to produce future scenarios for variables of interest at a fine spatial scale. Here,
large atmosphere–ocean general circulation models (GCMs) are often regarded
as producing useful extrapolations of some variables at large spatial scales (e.g.
mean global temperature), but the finer-scale structure is generally accepted as
less reliable. Downscaling therefore aims to construct plausible models for the
relationships between the variables of interest and the large-scale structures, and
then to use the GCM outputs to drive the future scenarios.

• Making full use of auxiliary information, as discussed above, to guide the selection
of an appropriate model. When building models for medium- or long-term extrap-
olation, it can be particularly useful to consider what is known about the long-term
behaviour of a system. In this respect, environmental problems often yield more
information than those in other areas such as economics. This is because many envi-
ronmental systems are forced to operate within defined limits, which provide some
(albeit limited) knowledge of the very long-term future. Few people would disagree,
for example, that global mean temperature will remain within tens of degrees of its
current value during any timescale of potential interest (which, for some environ-
mental applications such as the safety assessment of nuclear waste repositories, can
run into hundreds of thousands of years). By contrast, many of the models com-
monly used for forecasting and extrapolation have the property that the uncertainty
in a forecast grows without bound as the forecast horizon increases. Such mod-
els may provide perfectly adequate approximations for short-term extrapolations of
global mean temperature, but probably should not be used in the longer term.

• Understanding clearly the limitations of the model being used and, as far as possible,
being explicit about the kinds of future event that could lead to failure of the
extrapolations or their uncertainty assessments.

To some extent, the last point here is the most important: the limitations of forecasts
must be recognised if the information they provide is to be used effectively. Unfortu-
nately, in environmental science as elsewhere, the provision of information regarding
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the limitations of future projections is often inadequate at present. There is growing
recognition that some assessment of uncertainty needs to be provided, but this on its
own is not enough: it is also necessary to demonstrate that the uncertainty assessment
is realistic, or at least credible. This can only be achieved by carrying out projections,
with uncertainty assessments, for observations that were not used in the model-building
process and then using a suitable measure to compare these observations with both the
projections and the uncertainty assessment. This topic will not be treated further in this
book; there is, however, an extensive literature on the subject. A good starting point, for
atmospheric scientists in particular, is Jolliffe and Stephenson (2003). For its insights into
the dangers of extrapolation in general, Chatfield (2000) is also worth reading.

1.5 Scope of the book

The remainder of Part I is intended as a handbook of modern statistical methods that
may be useful for the analysis of environmental trends. The methods are illustrated using
simple examples, chosen primarily for clarity of exposition. For a similar reason, Part I
focuses mostly on situations in which there is a single series of primary interest (although
one might be interested in examining the possibility that trends in this series are associated
with changes in other factors). The simultaneous analysis of trends in several series (for
example wind speed records from all of the Dutch weather stations shown in Figure 1.1)
introduces additional complications that are not helpful at an introductory level. Chapter 6
provides pointers to some more advanced and specialised techniques, and serves as a
stepping stone to Part II of the book.

Part II presents four substantial case studies, in which modern statistical methods of
trend analysis have been applied to real environmental problems. The problems consid-
ered here are more involved than the simple examples presented in Part I: they serve
to illustrate how the basic techniques can be used in more complicated situations, as
well as to indicate some extensions that may be needed to meet the requirements of a
particular application.

The book is aimed at researchers and graduate students in environmental science,
as well as at statisticians. The reader is assumed to be familiar, at an operational level,
with the basic statistical concepts of estimation, confidence intervals, hypothesis testing
and regression. Some exposure to probability distributions and random variables (again
at an operational level) would also be helpful, although this is not essential. Most intro-
ductory statistics courses will provide the required level of background knowledge. For
those wishing to consolidate their statistical background, there are a number of books
on the market that give an overview of statistical methods for more or less specialised
environmental problems; some of these are summarised in Section 1.6 below.

Throughout Part I of the book, techniques are illustrated where possible using soft-
ware written in the statistical programming environment R (R Development Core Team,
2004). R is based on the S language, which is designed for easy implementation of a
wide range of advanced statistical and graphical procedures. It is rapidly becoming the
computing environment of choice within the statistical research community: apart from
the attractive price (it is free), this is mainly due to its flexibility and the ease of develop-
ing add-on packages to implement new methods. The Comprehensive R Archive Network
(CRAN)3 provides a means of distributing user-contributed packages that extend the basic

3 http://cran.r-project.org/mirrors.html.
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capabilities of the environment. In practice, this means that tested implementations of the
latest statistical methods are freely and widely available. Such resources are enormously
valuable: without them, it is unlikely that many applied researchers would have the time
or the energy to try out many of the methods described in this book. As it is, the difficult
work has all been done: all that is required is to know what methods are available, and
to experiment with them!

The data sets used in the examples can all be downloaded from the website for the
book,4 as can the R scripts used in the analyses. Those unfamiliar with R may wish to use
these scripts as models for their own work. Introductory texts on the S language, and on
R in particular, include Dalgaard (2002), Fox (2002) and Maindonald and Braun (2003).
Venables and Ripley (1999) is a compact and comprehensive reference source.

1.6 Further reading

The techniques covered in the book are largely drawn from the areas of time series
analysis and regression modelling: smoothing methods are particularly important in the
latter context. Although references are provided throughout the text, at this stage it may be
useful to suggest other books that give an accessible overview of these areas. In addition,
we indicate some texts that provide an introduction to statistical methods for environmental
applications. In the latter category, Manly (2001) provides a clear and accessible overview
of a wide variety of topics in environmental statistics; his discussion of the design of
experiments for environmental monitoring and trend detection is particularly useful in
the current context. More modern statistical developments are covered by Piegorsch and
Bailer (2005); the treatment here is slightly more advanced, although still accessible to
a general readership. Townend (2003) is another good general introductory text. Oceanic
and atmospheric scientists may find Thiebaux (1994) and Wilks (2005) helpful.

For an introduction to time series analysis, Chatfield (2003) is one of the most popular
books on the market; it contains an accessible overview of the subject, along with pointers
to other relevant literature. For an accessible and detailed discussion of trends from a time
series perspective, Kendall and Ord (1990) is hard to beat; unfortunately, this is now out
of print, but copies should still be available in libraries. Brockwell and Davis (2002) and
Diggle (1990) are also useful references.

The basics of regression analysis are covered by most introductory texts such as those
cited already; for a slightly more in-depth treatment it may be necessary to consult a stan-
dard statistical text such as Rice (2006) or Wackerly, Mendenhall and Scheaffer (2007).
Weisberg (2005) and Draper and Smith (1998) provide detailed accounts of regression
methods, starting at an introductory level. Fox (2002) and Faraway (2005) specifically
focus on the use of R for regression analyses, while Krzanowski (1998) provides a good
overview that includes extensions such as generalised linear models (covered in Section
3.5 of the present volume). In a time series context, the main difficulty is the potential
presence of dependence between successive observations. The econometrics literature is
probably the best place to look for general information regarding regression methods in
the presence of such dependence – Davidson and Mackinnon (2004) and Greene (2003)
both deal with the subject. For an introduction to nonparametric regression, which is
used extensively in the following chapters, Bowman and Azzalini (1997) is highly rec-
ommended: it contains many worked examples using the R environment. Another good
book, at a slightly more technical level, is Simonoff (1996).

4 http://www.wiley.com/go/trend_detection.
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At several places in Part I, the relevant theory is most easily expressed using matrix
notation. We assume familiarity with matrix multiplication, as well as the definitions and
properties of matrix transposes and inverses. Readers unfamiliar with these concepts may
care to consult a linear algebra text such as Poole (2006) or Cohn (1994), or one of several
books that collect together the results that are most useful in statistical applications: Healy
(2002) and Chapter 2 of Manly (1994) both contain excellent, compact and nontechnical
summaries, whereas Searle (1982) and Schott (1997) are more detailed.
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Exploratory analysis

This chapter describes some simple procedures that may be used to gain a preliminary
understanding of a data set, often as a prelude to more sophisticated analyses. Specifi-
cally, techniques for visualising time series data are discussed, as well as some of the
‘classical’ tests for trend. In addition, the key concepts of autocorrelation and smoothing
are introduced – the former because of the need to account for it in subsequent analyses
(see Section 1.4) and the latter because, in one form or another, smoothing techniques
underlic many of the other methods discussed in this book.

2.1 Data visualisation

The first step in any statistical analysis is to look at the data. For all but the smallest data
sets, this usually involves a variety of graphical displays designed to highlight specific
features, for example to gain a preliminary indication of the structure of a data set. In the
context of a trend analysis, the kinds of questions to be asked here are:

• Does it look as though trends are present? If so, how may they usefully be
described? Do they affect just the mean of the variable of interest, or do they
also affect other aspects such as variability? Do they appear the same throughout
the year, or do they vary with the seasons?

• Apart from trends, do other factors appear to affect the variable of interest? For
example, is seasonality present and if so how does it manifest itself? Are there
potentially important relationships with other variables in the data set?

Visualisation can also be used to identify possible data quality problems, and if pos-
sible to rectify these at the outset. Common problems with environmental data include
transcription errors, unflagged faults in measurement devices, changes due to new or
recalibrated instrumentation, changes in measurement units (for example the change from
Imperial to metric units in the UK in the 1970s), observations at or below the limit of
detection (see Section 6.5) and the undocumented ‘infilling’ of missing data with fic-
tional values. In the context of a trend analysis, it is particularly important to identify
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changes in measurement technology or practice over time, since these may lead to the
identification of spurious trends unless they are accounted for properly. To identify data
quality problems, some experience of the data collection process is usually helpful and,
of course, the task is simplified considerably through contact with the person(s) who orig-
inally collected the data. Even if this is not possible, however, careful data visualisation
can often identify features that merit further investigation. An obvious starting point is
to look at outlying observations to see whether there is anything obviously wrong with
them – bearing in mind, however, that an observation is not necessarily erroneous just
because it is an outlier.

Finally, visualisation can be used to suggest assumptions that may plausibly be held
in the initial stages of a subsequent analysis, and hence to guide the choice of analysis
strategy. For example, if successive observations in a data set appear to be independent
then it may be appropriate to use a ‘standard’ analysis technique, without modification
and without needing to worry about possible autocorrelation. It should be emphasised,
however, that assumptions made on the basis of a preliminary visualisation exercise should
be regarded as indicative only. More detailed analysis may reveal features that were not
apparent initially, so the use of preliminary analysis to suggest plausible assumptions does
not eliminate the need for subsequent checking!

The remainder of this section discusses some techniques that are commonly used to
address these aims.

2.1.1 Time series plots

As with the examples presented in Chapter 1, the obvious starting point in a trend analysis
is usually a plot of the observations against time.

Example 2.1
Figure 2.1 presents time series plots of some of the Dutch wind speed data considered
in Section 1.3.1. To show the main features of the data, they have been aggregated to an
annual timescale. Figures 2.1(a) and (b) both show the annual mean wind speeds at De
Bilt (see the map in Figure 1.1), from 1961 to 2002. There is little discernible structure in
panel (a): here the data are displayed using a scatterplot with the vertical axis starting at
zero (the smallest possible value of wind speed). In panel (b), the scatterplot is replaced
by a line graph, where the vertical axis is chosen so that the data fill the plot region and
the overall mean of the series is indicated. This plot clearly shows a gradual decreasing
trend and is arguably much more useful for examining changes over time. In particular, it
is striking that there are long sequences of observations above or below the overall mean
(between 1969 and 1979, and then after 1994). Such features form the basis for some of
the tests for trend to be discussed in Section 2.4.

It is also worth comparing Figure 2.1(b) with the corresponding plot in the bottom
right-hand panel of Figure 1.1. Both plots show exactly the same data and have identical
axis ranges. The only difference is the aspect ratio – Figure 2.1(b) is proportionally much
wider. However, this is enough to give a rather different visual impression – the trend in
Figure 1.1 looks dramatic, whereas that in Figure 2.1(b) appears rather modest!

The final plot in Figure 2.1 shows the annual mean wind speeds at IJmuiden, again
over the 1961–2002 period. At this site, around 3 % of the daily values are missing (see
Section 1.3.1.). To ensure that all annual means are comparable, therefore, they have been
computed only for years with at least 335 available daily observations (i.e. years with
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Figure 2.1 Time series plots of mean annual wind speeds at De Bilt (a, b) and IJmuiden
(c), 1962–2002. See text for details.

at most a month’s worth of missing data). The resulting missing values are indicated by
breaks in the line graph in Figure 2.1(c); it is interesting that they are all in consecutive
years. It could be argued that to visualise any trends, it would be better to connect the two
parts of the graph with a straight line over the missing period. However, this would give the
entirely unjustified impression that the missing values all lie in between the neighbouring
points. Indeed, in this particular application it is conceivable that some daily values are
missing because they were too high to be measured safely or accurately, in which case
we may suspect that years with several missing daily values had high annual mean wind
speeds. Another possibility is that this station experienced operational difficulties during
the mid 1980s, in which case there may be grounds for checking carefully the quality of
the data from this period. Of course, it would be possible in principle to infer something
about the missing daily values here, for example using records from neighbouring stations.
However, for present purposes it suffices to note that by inserting breaks in a line graph
(which is the default behaviour in R), the reader can make their own judgement about the
importance of the missing observations. �

This example illustrates that even with very simple data sets, it pays to think carefully
about the preparation and interpretation of exploratory graphics. The following guidelines
may be useful:

• When displaying observations made at equal time intervals, line graphs usually
reveal structure more clearly than scatterplots. Breaks in a line should be used to
indicate missing observations.

• For observations made at irregular intervals, line graphs have some undesirable
features. For example, if there is a large gap between two successive observations
then a line graph will give a strong visual impression of a linear trend over this
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period. For this reason, scatterplots may be preferable for displaying irregularly
spaced series.

• To aid the interpretation of a time series plot, it is useful to add a horizontal line
showing the mean of the available data.

• The time resolution of a plot should be chosen so that the main features of interest
stand out clearly. This might, for example, involve the aggregation of daily or
monthly data to a yearly level (an alternative is to smooth the data, as discussed in
Section 2.2 below).

• The interpretation of a plot can be influenced by the choice of scale for the vertical
axis. For exploratory analysis it is advisable to plot over the range of values of
scientific interest. This provides an instant visual context for any apparent structure.

• As a guide to subsequent analysis, it can be worth exploring nonlinear transforma-
tions of the vertical axis in a time series plot. On page 8, for example, Figure 1.2(a)
shows that the trend in haddock stocks can be regarded as linear on a logarithmic
scale. Many software packages, R included, support the use of logarithmic axis scal-
ing. To explore other transformations, however, it is usually necessary to transform
the data themselves prior to plotting (this has already been discussed, in Section
1.3.2, as an alternative means of producing Figure 1.2(a)).

• Almost all environmental data have some error associated with them. Sources of
error include the measurement process itself (for example when taking chemical
readings in a stream), as well as sampling variation (examples include the use of
wildlife census data to estimate total population numbers, and the use of data from
several weather stations to estimate a spatial average). If the magnitude of the error
is non-negligible and varies appreciably between observations, some measure of
the precision of each observation should be indicated clearly on a time series plot.
If estimated standard errors are available, the precision can be indicated by adding
points two standard errors above and below each observation to yield approximate
95 % uncertainty intervals. Otherwise, or if the calculation of standard errors is not
straightforward, some other measure should be indicated – for example the size of
sample used to obtain an estimate of population numbers.

Further general guidance on the graphical presentation of data can be found in the excellent
book by Cleveland (1994).

2.1.2 Boxplots

Time series plots are conceptually simple, but they do not fulfil all of the previously
described aims of an exploratory analysis. For example, it is not easy to see structure
other than in the mean of a series, and important detailed information (regarding outlying
observations, for example) may be lost if a long series is aggregated to show the main
features of interest more clearly. The boxplot is an alternative graphical technique that
remedies some of these deficiencies.

Boxplots, such as those in Figure 2.2, are designed to facilitate comparisons between
the distributions of observations falling in different groups – for example different months
of the year, different years or different spatial locations. For each group of observations,
the ‘box’ extends from the first to the third quartile of the data; the height of the box
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thus represents the interquartile range (IQR). The median is indicated in each box by
a horizontal line. The dashed ‘whiskers’ extend in each direction to the most extreme
data point that is at most 1.5 IQRs away from the box; observations more extreme than
this are marked individually.1 The idea is that the whiskers represent the main body of
each distribution and observations falling beyond the whiskers are possible outliers; the
construction is designed to ensure this interpretation for a wide range of distributional
shapes. For example, if the data values in each group are drawn from normal distributions
then the box heights will be around 1.35 standard deviations and only 0.7 % of observa-
tions are expected to fall outside the whiskers. If data values are drawn from exponential
distributions, the lower whiskers will usually extend down to the smallest data value and
around 5 % of observations will fall above the upper whiskers.

Example 2.2
Figure 2.2(a) shows the distributions of daily wind speeds at De Bilt, by month. There
is a clear seasonal pattern in the medians of the distributions, but even more so in
the locations of the upper whiskers – it seems that seasonality is present and is more
pronounced in the upper tails of the wind speed distributions. Notice also that the heights
of the boxes decrease in the summer months (May to August). This suggests a seasonal
pattern in the variability of wind speed: the higher the average wind speed in a month,
the higher the variability. This may need to be accounted for in subsequent analyses.
The shapes of all the distributions seem very similar – the winter boxplots look like
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Figure 2.2 Boxplots showing distributions of daily wind speeds at De Bilt between 1961
and 2002, (a) by month, (b) by five year period (excluding 1961 and 1962).

1 The exact implementation of boxplots differs slightly between software packages, particu-
larly regarding the extent of the ‘whiskers’. The description here is of the default behaviour in R
version 2.8.1.
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‘stretched’ versions of the summer ones. There are a few outlying observations in each
month, but this is to be expected given the large sample size (with 40 years of daily data,
the boxplot for each month represents around 1200 values); certainly, no observation
appears wildly implausible.

Figure 2.2(b) shows the distributions of daily wind speeds in consecutive five year
periods: 1963 to 1967, 1968 to 1972 and so on. Data for 1961 and 1962 have been omitted
altogether, to ensure that each group contains roughly the same number of observations
(otherwise, groups with fewer observations will tend to show fewer outlying values,
which in turn could give a misleading impression of a trend in the numbers of ‘extreme’
observations). The most striking feature of this figure is the similarity of the distributions
in each five year period. In particular, it is only just possible to see that the median lines
reflect the trend in mean wind speed seen in Figure 2.1(b). This is because of the difference
in vertical axis scales; that in Figure 2.2(b) is necessarily extended to accommodate the
more variable daily data. The upper whiskers of the boxes broadly follow the pattern
in the medians, indicating that, for this site at least, there are no obvious differences
between trends in the mean and extremes of the distribution. Above the upper whiskers, the
variability of outlying values is such that it is unwise to try and interpret apparent patterns.

In series with a strong seasonal component, it is possible that the seasonality may
obscure any trends that are present. For example, the upper tails of all the distributions in
Figure 2.2(b) are dominated by winter values, so these boxplots do not say much about
trends in ‘extreme’ summer wind speeds. To examine this, it would be necessary to account
in some way for seasonal variability before producing the five year boxplots. This could
be achieved by producing boxplots for each month separately or by ‘deseasonalising’ the
values in some way prior to plotting. A simple way to remove seasonality is by computing
the difference or ratio between each value and the corresponding monthly mean. More
sophisticated methods are discussed in Section 2.3. In this particular case, deseasonalising
the data makes virtually no difference to the result, which is therefore not shown.

The conclusion from this exercise is that any trends in annual mean wind speeds
are small by comparison with the daily variability. For the purpose of engineering risk
assessment (see Section 1.3.1), this is a preliminary indication that, in this location at
least, the trends are relatively unimportant. In determining the viability of wind power
schemes, however, the trend in annual means may be more significant. �

In summary, by allowing a visual comparison of entire distributions, boxplots provide
a powerful supplement to time series plots in an exploratory analysis. They are particularly
useful for assessing changes in the variability and shape of distributions and for identifying
possible outliers (for example, Figure 2.2 shows that the highest recorded wind speed at
De Bilt is 15 m s−1, and that it occurred during January between 1973 and 1977). However,
relatively weak trends may be less apparent from boxplots than from time series plots.
Care is also required with the interpretation of boxplots when many observations are
missing – particularly when there is a suspicion that missing values do not occur at
random. This may occur, for example, if especially high values are difficult to record or
if access to a monitoring site becomes difficult due to adverse conditions related to the
variable of interest.

2.1.3 The autocorrelation function

In Section 1.4, it was noted that dependence between successive observations in a
time series may create problems for the construction of hypothesis tests and confidence
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intervals using standard methods. Such serial dependence is usually referred to as
‘autocorrelation’; in this section we look at visual methods that are designed to indicate
whether this is present.

In general, one might expect that the association between pairs of observations will
depend on the time separation between them. Pairs of wind speed measurements made on
successive days will tend to be more similar than pairs made a week apart, for example. It
is therefore useful to examine the strength of association at a variety of time separations.

The most common statistical tool for measuring association between two quan-
tities is the (Pearson) correlation coefficient, defined for pairs of observations:
(x1, y1) , (x2, y2) , . . . , (xn, yn) as

r =
∑n

i=1 (xi − x) (yi − y)√∑n
i=1 (xi − x)2 ∑n

i=1 (yi − y)2
,

where x and y are the sample means of the x and y values respectively. To measure
association in a regularly spaced time series, one could therefore compute the correlation
between pairs of observations at various separations. For example, given a time series
y1, y2, . . . , yT , the association between observations separated by a single time unit could
be measured by considering the successive pairs (y1, y2) , (y2, y3) , . . . , (yT −1, yT ) as
bivariate data and calculating the correlation between them in the usual way. This would
be equivalent to calculating the correlation between the original series and a shifted or
lagged version, obtained by moving each observation backwards or forwards by one time
unit (hence the term ‘autocorrelation’ – it is the correlation between a series and itself).
Note that shifting the series backwards or forwards would yield the same result.

However, time series autocorrelation and ‘ordinary’ correlation differ in several impor-
tant respects. Most of these are rather subtle, but an obvious one is that some observations
are used twice in the time series case – y2 appears in both the first and second pairs above,
for example. Because of these differences, autocorrelations are not usually calculated in
the same way as ordinary correlations. For a regularly spaced time series with no missing
data, the sample autocorrelation coefficient at lag k ≥ 0 is usually defined as

r (k) =
∑T

t=k+1 (yt − y) (yt−k − y)∑T
t=1 (yt − y)2

, (2.1)

where y = T −1 ∑T
t=1 yt is the sample mean of all the observations. This can be interpreted

as a correlation between the original series and a version shifted back k time units. For
k < 0, corresponding to a shift forwards rather than backwards, we define r(k) = r(−k).
Putting k = 0 in (2.1) yields r(0) = 1. The collection {r(k)} of all sample autocorrelation
coefficients is called the sample autocorrelation function (ACF). For lags k ≥ 0, a plot
of r(k) against k is called a correlogram .

The autocorrelation coefficient r(k) can also be written as

r (k) = c(k)/c(0) where c(k) = T −1
T∑

t=k+1

(yt − y) (yt−k − y) .

The quantities {c(k)} are called the sample autocovariances and stand in the same relation
to the autocorrelations as do covariances to correlations in standard settings.
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Note that y is used throughout (2.1) whenever a sample mean is required – this
contrasts with the usual correlation coefficient, in which separate means are computed
for each variable. The reason for using y throughout will be discussed below. Note also
that the numerator and denominator of (2.1) have different numbers of terms–there are T

contributions to the sum in the denominator, but only T − k in the numerator. In view of
this, it may seem natural to multiply r(k) by T/(T − k) to ensure that the numerator and
denominator are in some sense comparable. However, this is not usually done. The reasons
for this are rather technical and will not be discussed here; details can be found in Priestley
(1981, Section 5.3). It suffices to note that the ratio T/(T − k) will be approximately 1
if k is small relative to T ; hence it is best to calculate sample autocorrelations only
for relatively small values of k. Most software packages automatically determine an
appropriate range of lags to display when generating a correlogram. It is also worth
noting that good packages do not use formula (2.1) to calculate sample autocorrelations:
an alternative based on the fast Fourier transform (FFT) is usually used instead (Chatfield,
2003, Section 7.5). Numerically, the results are identical, but the FFT is much cheaper
computationally and enables the ACF to be computed rapidly for large data sets.

Of course, since the ACF is computed from a sample of data, the coefficients will
not be exactly zero even in the absence of underlying correlation. To aid interpretation
of a correlogram, it is therefore common to add horizontal lines showing the magnitude
of coefficients that should be considered ‘significantly’ different from zero. It is standard
practice to plot these lines at levels ±1.96/

√
T , where T is the length of the series.

These lines define approximate 95 % confidence limits for individual coefficients, under
the assumption that the observations are an uncorrelated sequence of values drawn from
probability distributions with a common mean and variance (Chatfield, 2003, Section 4.1).
If this assumption holds, at lags greater than zero around 95 % of the coefficients should
lie between the lines.

Formula (2.1) assumes that there are no missing observations. If values are missing
from a regular time series, it is not entirely clear how best to proceed. One option is
to replace (2.1) with the corresponding expression in which terms containing missing
values are dropped from each sum. For example, if the ninth observation y9 is missing,
terms corresponding to t = 9 and t = k + 9 would be dropped from the numerator and
the term corresponding to t = 9 would be dropped from the denominator. For reasons
that are again rather technical, this solution is not ideal and by default R (along with
most other software packages) does not allow missing values when computing an ACF.
This default behaviour can be changed, however, in which case R omits terms as just
described. Providing the proportion of missing observations is not too large, the result
will usually be perfectly adequate for an exploratory analysis. Otherwise, an alternative is
to use methods that are appropriate for assessing dependence in irregularly spaced series;
see Section 2.1.4.

As with the ordinary correlation coefficient, care is required in the interpretation of
a sample ACF. Correlation is a measure of the strength of linear association between
two quantities: it is well known that such association can arise either because the two
quantities are intrinsically related or because they are both influenced by other factors. It
is unfortunate that one such factor may itself be an underlying trend! To illustrate this,
consider a series that increases at a fairly constant rate over time. In this case, the sample
mean y will correspond to the level roughly halfway through the observation period. Most
pairs of observations separated by k time units will fall on the same side of this halfway
level if k is small relative to the length of the series, and hence will tend to be either both
below or both above y. This leads to positive autocorrelation at lag k. The essence of
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this argument applies equally in the presence of more complicated trend structures. The
net result is that it can be difficult to discriminate, on the basis of a correlogram, between
‘genuine’ autocorrelation and trends. The ambiguity can often be resolved by considering
the scientific context: a useful approach is to ascribe to autocorrelation any association at
small time lags that cannot be explained by long-term variation (recall the definition of
trend at the end of Section 1.1). The interpretation can be simplified greatly by considering
the ACF in conjunction with other plots of the data. An example is given below.

A further point in relation to the sample ACF is that lack of correlation does not
imply lack of association; it is possible for two quantities to be related to each other in a
nonlinear way and to be uncorrelated. A plot of yt against yt−1 can be a useful means of
revealing such nonlinear association.

Example 2.3
Correlograms for the De Bilt wind speed series are presented in Figure 2.3. Panel (a) is
for the time series of monthly mean wind speeds. Note that r(0) = 1. The clear oscillating
pattern is an example of association due to factors that have not been accounted for in
the analysis – it is due to the seasonality already observed in Figure 2.2(a). Hence this
plot does not reveal anything new: it will be more useful to examine the autocorrelation
after removing the seasonal cycle.

As noted previously, a simple way to remove seasonality is to compute the difference
or ratio between each value and the corresponding monthly mean. The ratio has been
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Figure 2.3 Wind speed data from De Bilt, 1961 to 2002: correlograms for (a) monthly
means, (b) deseasonalised monthly means, (c) annual means, (d) deseasonalised daily
values. The horizontal dashed lines on each plot are approximate 95 % confidence limits,
computed under the assumption that there is no underlying trend or autocorrelation.
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used here, since it is more appropriate for series that cannot take negative values and in
which the variability increases with the mean (see Figure 2.2(a)). Figure 2.3(b) shows
the correlogram for the resulting deseasonalised series, for lags up to five years. The
coefficients decrease slowly from a value of around 0.2 at lag 1, and almost all are positive.
This suggests weak association between observations at fairly large time separations,
which in turn can be interpreted as a slight tendency for wind speeds to be above or
below average for extended periods. Whether or not this is ascribed to ‘trend’ or to
‘autocorrelation’ depends largely on whether variation over this kind of timescale is
regarded as ‘long-term’.

Figure 2.3(c) shows the sample ACF for annual, rather than monthly, mean wind
speeds. In contrast to the monthly ACFs, there is little structure here. This suggests
that the plot may be dominated by sampling variation, and hence that the ‘underlying’
autocorrelation is effectively zero. Some support for this can be found by observing
that all 16 coefficients lie within the approximate 95 % confidence limits shown on the
plot. In the absence of any other information, this would suggest that the annual means
show neither trends nor autocorrelation. This apparently contradicts both the time series
plot in Figure 2.1(b) and the monthly ACF in Figure 2.3(b). An explanation for this is
that the annual autocorrelations are rather imprecise since they are estimated from just 40
observations. A pragmatic interpretation of Figure 2.3(c) is that autocorrelation is unlikely
to be a major problem in the analysis of annual means.

Finally, Figure 2.3(d) shows the sample ACF for deseasonalised daily wind speed data
(here, seasonality has been removed by computing the ratio between each day’s value
and the mean of all values for that calendar day). This is rather more interesting than any
of the previous plots, showing a rapid decay to a lag of around 12 days and levelling
off thereafter at a very small, but nonetheless positive, level. As with the monthly plots,
the persistence of positive coefficients at large lags can be attributed to trends – or at
least to extended periods of above- and below-average wind speed. The behaviour at
lags below 12, however, is rather different and suggests another mechanism at work. In
fact, dependence at short timescales is not unexpected: it arises because in mid-latitudes,
individual weather systems (and the associated winds) usually affect any given location
for several successive days (McIlveen, 1992, Section 11.2). In the current context, events
on the scale of individual weather systems are of no scientific interest; it is therefore
convenient to interpret this short-scale dependence as ‘genuine’ autocorrelation. �

So far, we have discussed the sample autocorrelation function as a purely descriptive
tool for assessing the strength of serial dependence in a series. In many ways, its interpre-
tation can be simplified by introducing the concept of a statistical model. In Section 1.1,
we saw that most modern statistical methods regard a sequence y1, . . . , yT of observations
as the realised value of a corresponding sequence Y1, . . . , YT of random variables. Such
a sequence is said to be stationary if the following three conditions are satisfied:

(a) The random variables all have the same expectation: E (Y1) = · · · = E (YT )

= μ, say.

(b) The random variables all have the same variance: Var (Y1) = · · · = Var (YT )

= σ 2, say.

(c) For any time t and lag k, the theoretical correlation between Yt and Yt+k ,
defined as

Corr (Yt , Yt−k) = 1

σ 2
E

[
(Yt − μ) (Yt−k − μ)

] = ρ(k), say, (2.2)
does not depend on t .
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In simple terms, the first two of these conditions state that there is no trend in the mean
or the variance of the distributions, and the third states that the dependence structure does
not change through time. For our purposes it is not necessary to draw the distinction,
often found in mathematical texts, between sequences with these three properties (usually
described in such texts as ‘weakly stationary’ or ‘second-order stationary’) and more
restricted classes of stationary sequence. In Chapter 5, we will discover the surprising
fact that the realised values of a stationary sequence can have trend-like behaviour. For
the moment, however, to keep things simple it may be helpful to think of stationarity
as ‘absence of trend’. The simplest example of a stationary sequence is obtained when
the random variables all have zero mean and constant variance, and are uncorrelated: the
result is a white noise sequence.

In the context of stationary sequences, the sample autocorrelation function {r(k)} is
in fact an estimator of the underlying theoretical function {ρ(k)} defined in Equation
(2.2). This explains why y is used throughout Equation (2.1) whenever a sample mean
is required – it is the natural estimator of μ in (2.2). Moreover, in some applications it
can be useful to interpret the sample autocorrelation function by comparing its behaviour
with that of {ρ(k)} for particular classes of statistical models. This idea will be explored
further in Chapter 5.

2.1.4 Irregularly spaced data – the variogram

The autocorrelation function can be a useful means of quantifying serial dependence in a
regularly spaced time series with few missing observations. In some situations, practical
considerations inevitably result in minor departures from regularity, as with the water
chemistry data in Section 1.3.3. The resulting series can usually be treated as though
it is regular, and the autocorrelation function used to summarise dependence. Such an
approach is not appropriate, however, when observations are made at highly irregular
intervals, and in this case alternative techniques are required.

To estimate a correlation, multiple pairs of observations are required. One of the
problems with irregularly spaced data is the lack of such multiple pairs, since each pair of
observations is separated by a different lag. One way to circumvent this is, for each lag of
interest, to compute correlations between all pairs of observations with approximately the
right separation. To our knowledge there is, however, no standard procedure equivalent to
Equation (2.1) for use in this case; neither are there any simple methods for determining
whether the resulting correlations differ significantly from zero. Note that there is nothing
wrong in principle with the idea of an underlying lag-dependent correlation; the difficulty
lies purely in estimating it.

As an alternative to the use of correlations to measure dependence, one can consider
the squared differences between pairs of observations. This idea has been used extensively
in geostatistics, where it is often necessary to measure dependence between observations
made at an irregular set of spatial locations. In the current context it is helpful to think of
irregularly spaced observations as samples from a process that is defined at all points in
time. Conceptually, this is slightly different from the framework of the previous section,
where we only considered a discrete collection of time points 1, . . . , T . To emphasise this
difference, we use a slightly different notation and denote by y(t) an observation made at
time t , which is considered to be the realised value of a corresponding random variable
Y (t). Denote the expected value of Y (t) by μ(t). Consider two particular time points, t

and t + h, and consider the expected squared difference between observations made at
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these time points:

E
[
(Y (t + h) − Y (t))2]
= E

[
({Y (t + h) − μ(t + h)} − {Y (t) − μ(t)} + {μ(t + h) − μ(t)})2] ,

the second line being obtained from the first by adding both μ(t) and μ(t + h) and
then subtracting them again. Suppose now that the process is stationary. In this case,
μ(t + h) − μ(t) = 0 so that we have

E
[
(Y (t + h) − Y (t))2] = E

[
({Y (t + h) − μ(t + h)} − {Y (t) − μ(t)})2]

= E
[
(Y (t + h) − μ(t + h))2] + E

[
(Y (t) − μ(t))2]

−2E
[
(Y (t) − μ(t)) (Y (t + h) − μ(t + h))

]
.

The first two terms here are simply the variances of Y (t + h) and Y (t), which are equal
(to σ 2, say) if the process is stationary. The final expectation is the covariance between
them, which can alternatively be written as σ 2ρ(h), where ρ(h) is the autocorrelation
between Y (t + h) and Y (t) (which does not depend on t since the process is stationary).
We therefore have

E
[
(Y (t + h) − Y (t))2] = 2σ 2 [1 − ρ(h)] = 2v(h), say. (2.3)

The function v(h) = 1
2 E

[
(Y (t + h) − Y (t))2], which depends on the lag h but not upon

the time t , is called the (semi-)variogram and, from Equation (2.3), clearly carries the same
information as the autocorrelation function for a stationary process. Although we have
considered only stationary processes in the development above, in fact it can be shown that
the variogram is defined for a slightly wider class of processes, called intrinsic processes
(Webster and Oliver, 2001, Section 4.5). If a process is not stationary, the autocorrelation
function cannot be defined; it has therefore been argued in the geostatistical literature
that the variogram is a more useful summary of dependence. However, for stationary
processes, the relationship with the autocorrelation function in Equation (2.3) provides a
useful guide to interpretation. It shows, for example, that if autocorrelation is high then
the variogram will be close to zero; conversely, at large lags, where one would expect
very little autocorrelation, the variogram will be approximately σ 2.

How does this help to measure dependence for irregularly spaced data? The answer
is that from observations y(t) and y(t + h), an obvious estimate of the variogram is

v̂(h) = (y(t + h) − y(t))2 . (2.4)

The estimate is not very accurate, of course, but it can be computed for every pair
of points in a data set. A sample of N observations will yield N(N − 1)/2 pairs of
points, with separations h1, . . . , hN(N−1)/2, say. Application of Equation (2.4) to each
pair of points will produce estimates v̂ (h1) , . . . , v̂

(
hN(N−1)/2

)
. A plot of the estimates

against the separations is sometimes called a variogram cloud (Webster and Oliver, 2001,
Chapter 5). It is usually difficult to interpret such a plot directly, because the individual
estimates tend to be extremely variable; moreover, if N is large then the variogram cloud
may simply contain too many points to see any structure. One way round this, which is
often adopted in the applied geostatistics literature, is to average the values of v̂(h) over
groups of pairs with similar lags. A disadvantage of this approach is that the results can
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depend on the choice of grouping. An alternative is to fit a smooth curve through the
variogram cloud, using similar methods to those discussed in Chapter 4 of this book. The
latter approach is implemented in the R command plot.Variogram, in the nlme library
supplied with the standard download (Pinheiro et al ., 2008), as well as via the variog

command in the add-on geoR library (Ribeiro and Diggle, 2001).

Example 2.4
Consider the ozone concentration data introduced in Section 1.3.4. Although this series
is nominally at a regular daily resolution, the high number of missing observations, and
their irregular pattern of occurrence, suggests that standard methods for the analysis of
regularly spaced series may not be appropriate here. Instead of computing a sample ACF,
we therefore use variograms to visualise the temporal dependence structure of the data.

Figure 2.4(a) shows the sample variogram of the daily ozone series. This was produced
in R using the variog command in the geoR library. Each point here represents the
average squared difference between all pairs of values separated by the corresponding
time lag; since the fundamental time interval here is daily and the number of observations
is large, this can be regarded as a straightforward and unambiguous way to smooth the
variogram cloud. The individual points in the cloud are not shown, because many of them
are so large as to obscure the overall structure.

0 10 20 30 40

0
20

40
60

80
10

0

(a)

Lag (days)

se
m

iv
ar

ia
nc

e

50 60

0 10 20 30 40

0
20

40
60

80

(b)

Lag (days)

se
m

iv
ar

ia
nc

e

50 60

Figure 2.4 Variograms for (a) daily ozone series, (b) deasonalised daily ozone series.

Equation (2.3) shows that for a stationary process the shape of the variogram is a
scaled mirror image of the ACF: whereas the ACF typically decays towards zero with
increasing lag, the variogram increases to an upper limit (known as the sill in the geo-
statistics literature) representing the variance of the process. Figure 2.4(a) does not show
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this behaviour, however: rather, after an initial steep rise to a lag of around 10 days,
the variogram continues to increase gradually up to the maximum plotted lag of around
2 months. In variogram terms, this is the equivalent of slow decay in the sample ACF
and suggests the presence of a systematic structure that cannot be attributed to short-term
temporal dependence. Given the clear seasonality in Figure 1.4, this is unsurprising. For
a clearer picture of short-term dependence, it is therefore helpful to remove the seasonal
cycle and then recompute the variogram. Figure 2.4(b) shows the result: here, the seasonal
cycle has been estimated by calculating the mean ozone concentration for each day of the
year (the 20 year record makes this feasible despite the large number of missing values),
and this estimated cycle has been subtracted from each year’s data prior to calculating
the variogram. For a ‘genuinely’ irregular series, of course, it would not be possible to
estimate the seasonal cycle in this way. In this case one possibility would be to define
a ‘window’ of dates around each calendar day and to estimate the seasonal cycle using
averages of all observations within these overlapping windows. Another possibility would
be to fit a preliminary regression model representing the seasonal cycle, for example using
sine and cosine terms (see Section 3.2), and to consider the residuals from such a model
as a deseasonalised series.

Figure 2.4(b) shows that deseasonalising the ozone series has eliminated the gradual
increase of the variogram for lags above 10: the initial rapid increase remains, however.
This suggests that there is autocorrelation in the series at lags up to around 10 days. For
lags above this, the variogram fluctuates about a constant value of around 80, representing
the variance of the deseasonalised process. �

2.1.5 Relationships between variables

The analyses described so far are appropriate for visualising the structure of a single
series. In practice, it is often of interest to assess the relationships between different
series, for example to determine how some quantity x affects a response y. Given data
{(xt , yt ) : t = 1, . . . , T }, a natural starting point is to display the pairs {(xt , yt )} using a
scatterplot. Although this shows the relationship between contemporary observations, it
does not tell the whole story. For example, if y does not respond to changes in x until �

time units later, it would be more appropriate to produce a scatterplot of pairs {(xt , yt+�)}.
In reality, however, inter-series relationships are rarely as simple as this, and even if they
are this simple, the value of � is usually unknown.

For regularly spaced series with no missing data, a concise way of summarising
relationships between series is via the sample cross-correlation function (CCF). The idea
is very similar to the ACF: the cross-correlation coefficient at lag k is defined as

rxy (k) =
∑

t (xt−k − x) (yt − y)√∑T
t=1 (xt − x)2 ∑T

t=1 (yt − y)2
, (2.5)

where the sum in the numerator is computed over all t for which both yt and xt−k are
available; rxy(k) is a measure of association between values of y and values of x that
occurred k time units previously. The CCF is the collection

{
rxy(k)

}
of all sample cross-

correlation coefficients. In the simple case when y responds to x after a delay of � time
units, ideally the CCF would show a prominent spike at lag �. As with the autocorrelations,
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the cross-correlations can be written in terms of cross-covariances:

rxy (k) = cxy (k) /
√

cxx(0)cyy(0), where cxy (k) = T −1
∑

t
(xt−k − x) (yt − y) ,

and cxx(0), cyy(0) are the lag zero autocovariances (i.e. the variances) of the two series.
In contrast to the ACF, rxy(k) is not usually equal to rxy(−k): the former measures

association between y and a previous value of x, whereas the latter measures association
between y and a subsequent value of x. Therefore the CCF must be calculated and plotted
over both positive and negative lags.2 In the absence of other complicating factors, nonzero
coefficients at positive lags suggest that y responds to changes in x; on the other hand,
nonzero coefficients at negative lags suggest that x responds to changes in y. Again, 95 %
limits are usually added to plots of the CCF to assist in determining whether individual
coefficients are significantly different from zero.

Unfortunately the CCF, like the ACF, is influenced by the effects of trends and other
factors. Moreover, spurious nonzero coefficients can arise if both the x and y series are
themselves autocorrelated (Brockwell and Davis, 2002, Section 7.3; see also Walther,
1997, for a compelling demonstration). This makes interpretation difficult – if there are
apparently significant cross-correlations between two series that both exhibit significant
autocorrelation, either of the following mechanisms could be responsible:

• There is a genuine relationship between y and x, which causes autocorrelation in
x to be propagated through into y.

• x and y have nothing to do with each other; the significant cross-correlations are
spurious artefacts of the autocorrelation in both series.

Of course, the scientific context may dictate that one of these explanations is more
plausible than the other. Otherwise, one way to resolve the dilemma is to remove the
autocorrelation from one or both series prior to calculating the CCF. This is called pre-
whitening , and will be discussed further in Chapter 5. In the meantime, perhaps the best
advice is to exercise caution in the interpretation of cross-correlations, particularly if
autocorrelation is present in both series.

Example 2.5
Figure 2.5 shows correlation functions for the deseasonalised quarterly alkalinity series
from the Round Loch of Glenhead (see Section 1.3.3). Seasonality has been removed by
subtracting the mean for each quarter from the corresponding observations. Figure 2.5(a)
is the sample ACF for the deseasonalised series. The positive coefficients up to a lag
of around three years are probably due, at least in part, to the trend in alkalinity that is
evident from Figure 1.3.

For illustrative purposes, Figure 2.5(b) shows the CCF of the deseasonalised alkalinity
series with a lagged version of itself. Here, the series (xt ) is defined as xt = yt+1, so that
(yt ) follows (xt ) exactly and we might expect to find rxy(1) = 1. In fact, its value is 0.998:
it is not exactly equal to 1 because, according to (2.5), it is computed from T − 1 pairs of
observations, whereas the sample means x and y are each computed using T observations.
The nonzero cross-correlations at other lags are due to autocorrelation within the alkalinity
series. Notice that several of them are nominally significant according to the confidence

2 It is true, however, that rxy(−k) = ryx(k).
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Figure 2.5 Correlogram and cross-correlation functions for deseasonalised quarterly
alkalinity series from the Round Loch of Glenhead, 1988 to 2002: (a) correlogram for
deseasonalised alkalinities, (b) cross-correlation with a lagged version of the same series,
(c) cross-correlation with quarterly chloride series, (d) cross-correlation with quarterly
series of nonmarine sulfate.

limits on the plots: a naı̈ve interpretation would be that there is association between the
series over a range of lags. This illustrates the potential difficulties in interpreting a CCF.

Figures 2.5(c) and 2.5(d) show the CCFs for deseasonalised alkalinity with chloride
(Cl) and nonmarine sulfate (xSO4) respectively. The Cl and xSO4 series have not been
deseasonalised here; this is because ultimately we want to assess directly their relationship
with alkalinity, and seasonal adjustment would hinder such a direct interpretation. Seasonal
adjustment of the alkalinity series, however, can be regarded as a crude way of adjusting
for other factors prior to investigating the relationships of interest.

The chloride alkalinity CCF shows a small and apparently significant negative spike
at lag zero, indicating the possibility of a weak simultaneous relationship between the
two quantities. The remaining structure in the plot can safely be ignored, on the basis
of lessons learned from Figure 2.5(b). Interpretation of the sulfate alkalinity CCF is
less straightforward, with apparently significant correlations extending over a range of
lags. This can to some extent be explained by the fact that the ACF of the sulfate
time series (not shown here) exhibits very slow decay, indicating the presence of either
substantial autocorrelation or trend. Since both the alkalinity and sulfate series appear
autocorrelated, and there is no clear structure in their cross-correlation function, there is
little point in trying to draw meaningful conclusions from Figure 2.5(d). In particular, it
would be unwise to pay too much attention to the fact that the maximal cross-correlation
appears to be at lags −3 and −4. Interpreted naı̈vely, this would suggest that sulfate
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responds to changes in alkalinity on timescales of 9 months to a year; however, it is
difficult to imagine a mechanism that would have this effect, and it is much more likely
that the result reflects sampling variability and the presence of other structures within
both series. �

The example shows that CCFs may be useful when relationships between series are
strong enough, but that otherwise the results may be ambiguous. To proceed further in
such situations, it can be helpful to adopt a model based approach. We return to this in
Chapter 3.

2.2 Simple smoothing

Time series plots are useful for visualising structure in a series providing the number of
observations is not too large. However, it can be difficult to interpret such a plot if a
series is long and highly variable. One way to deal with this is to aggregate the data to
a coarser (e.g. annual) timescale prior to plotting. An alternative is to smooth them so as
to display any trends more clearly. This section introduces some of the ideas involved.
These will be elaborated later, particularly in Chapter 4.

2.2.1 Moving averages

The simplest way to create a smoothed series is to calculate a weighted average of
observations in some neighbourhood of each time point. Given data y1, . . . , yT , such a
moving average takes the form

ỹt =
k∑

j=−k

wjyt+j (2.6)

for a collection of weights
{
wj

}
satisfying

wj = w−j (j = 1, . . . , k) and
k∑

j=−k

wj = 1. (2.7)

A moving average is an example of a linear filter . Other examples are discussed in
Section 2.3.

The ‘symmetry’ restriction wj = w−j is not strictly necessary. However, it seems
intuitively reasonable and the use of asymmetric weights can lead to difficulties in
interpretation – for example, the smoothed series may be shifted in time relative to
the original. In this chapter we will therefore focus almost exclusively upon symmetric
filters. In this case, there must be an odd number of weights in the filter, since the sum
in (2.6) involves 2k + 1 terms.

In its simplest form, smoothing using (2.6) is very similar to aggregation. The main
difference is that smoothing produces a value at every time point whereas aggregation
does not: smoothing a monthly series produces another monthly series, but aggregation
produces a series at a coarser resolution.

Clearly, in general the smoothness of the filtered series (ỹt ) depends on the value of
k in (2.6) – larger values of k will yield smoother results. Notice also that to calculate
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ỹt , the values of yt−k to yt+k are required. A consequence of this is that ỹt cannot be
calculated for t < k + 1 or for t > T − k. Methods for dealing with this are discussed in
Section 2.3.3 below.

2.2.2 Local polynomial fitting

Figure 2.6 illustrates another possible approach to smoothing. The solid line here repre-
sents a time series of observations, showing a clear downward trend. Consider smoothing
the series at time t = 4; this could be achieved by calculating a weighted average of neigh-
bouring observations as in (2.6). Another idea is to fit a straight line to the neighbouring
observations and to take the smoothed value ỹ4 from the fitted line. In Figure 2.6, the
dashed line has been fitted to the group of five marked observations using least squares,
and the fitted value ỹ4 is marked as a solid box. The fitted value seems more consistent
with the overall pattern than the original observation y4 (solid circle).

Time

0 2 4

Observed series
Observation at time t = 4
Observations used for local fitting
Fitted line
Fitted value at time t = 4

6 8

Figure 2.6 Smoothing using local polynomials: smoothed value ỹ4 derived by fitting a
straight line to observations y2, . . . , y6.

This idea is not restricted to fitting straight lines. One could equally consider using a
quadratic, cubic or other polynomial fitted to the neighbouring observations. The general
procedure is called local polynomial smoothing . It requires the choice of both the number
of neighbouring points and the degree of the polynomial to fit (linear, quadratic, cubic or
higher order).

Intuitively, it seems that local polynomial smoothing may be able to track an under-
lying trend more effectively than a moving average of the form (2.6), because the fitted
polynomials can adapt to patterns in the data. In Figure 2.6, for example, the overall struc-
ture between times 2 and 6 seems reasonably well represented by a straight line. In fact,
however, this apparent advantage is illusory. It can be shown (Kendall and Ord, 1990,
Chapter 3) that the fitted values from local polynomials are actually weighted averages
of the neighbouring observations. Indeed, the fitted values from a local linear fit as in
Figure 2.6 are nothing more than simple averages of the neighbouring observations! This
is a special case of a more general result: for regularly spaced series, (2.6) yields identical
results for weights obtained from local polynomials of degrees 2p and 2p + 1. A simple
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moving average can be regarded as the fitted value from a polynomial of degree zero (i.e. a
constant), which according to this result is the same as that from a linear fit. Similarly, local
quadratic and cubic fits will yield identical results. In general, higher degree polynomials
yield more complicated patterns of weights. For example, local polynomial smoothing
using quadratic or cubic polynomials fitted to groups of 15 observations is equivalent to
filtering using (2.6), with weights wj = w∗

j /1105, where w∗
j is defined as follows:

j 0 ±1 ±2 ±3 ±4 ±5 ±6 ±7
w∗

j 167 162 147 122 87 42 −13 −78 . (2.8)

Notice the presence of negative weights in this table – the
{
wj

}
in (2.6) are not restricted

to be positive.3

Since local polynomial smoothing can be regarded as a special case of filtering using
moving averages, it appears somewhat redundant. However, it has the important advantage
of interpretability: it often makes sense to think of a trend as ‘approximately linear’ or
‘approximately quadratic’ over short time periods, and this provides some insight into
exactly what the procedure is doing. By contrast, a collection of weights such as those in
(2.8) is difficult to interpret out of context. A more compelling advantage is that the idea
of fitting polynomials can be exploited to yield fairly accurate estimates of trend near the
ends of a series; this is discussed in more detail later.

2.2.3 Further considerations

So far, we have assumed that the observations are equally spaced in time. For unequally
spaced time series, the basic concepts are unchanged, but some modifications are required
to cope with the irregular nature of the data. These are discussed in Chapter 4.

The implication behind the moving average (2.6) is that interest lies in the mean of
the studied process. If this is not the case, it is usually possible to compute aggregated
summaries of the data that reflect the aspects of interest, and then to apply smoothing
techniques to these aggregated summaries. For example, to study trends in extreme daily
wind speeds a first step might be to compute a time series of annual maximum wind
speeds; smoothing techniques could then be applied directly to the maxima.

Smoothing has been introduced as a way to visualise structure in a time series. If this
structure is to be interpreted as a trend, ideally there should be no other factors affecting
the mean of the series. For example, if a time series contains a strong seasonal cycle
then this may have a substantial effect on the results unless the weights

{
wj

}
are chosen

carefully (see Section 2.3). In general, if other factors are present then a full analysis
requires that they are all considered simultaneously. However, for exploratory purposes
some simple adjustment may suffice, at least initially.

Example 2.6
Figure 2.7(a) shows the time series of deseasonalised monthly mean wind speeds at De
Bilt, from 1961 to 2002. Denoting by yij the observed mean wind speed in month i of
year j (i = 1, . . . , 12; j = 1961, . . . , 2002), these deseasonalised values (or anomalies)
have been computed as

y∗
ij = 100yij /yi,

3 The R command polyfil, supplied as part of the software accompanying this book, can be
used to find the weights corresponding to any local polynomial smoother for equally spaced data.
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where yi is the mean of all observations in month i. The anomalies thus transform each
value to a percentage of the long-term mean for the corresponding month. There are far
too many points on this plot to see any clear structure.

Figures 2.7(b) to (d) show the same monthly anomalies, with smoothed versions
superimposed. Panel (b) uses a simple moving average of the form (2.6), with wj = 1/61
for j = −30 to 30. The filter length of 61 months has been chosen to be as close as
possible to five years (a length of exactly five years cannot be obtained since, as noted
previously, the length of any symmetric filter must be an odd number). Panels (c) and (d)
both use 15-point filters; that in panel (c) has wj = 1/15 for j = −7 to 7 and panel (d)
uses the weights given in (2.8).
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Figure 2.7 (a) Monthly mean wind speed anomalies (%) at De Bilt, 1961 to 2002,
(b) with 61-point moving average, (c) with 15-point moving average, (d) with moving
average based on the 15-point polynomial weights (2.8).

Although the three smooths all give an overall impression of a decreasing trend,
the details are rather different in each case. As expected, the 61-point filter yields the
smoothest result. However, panels (c) and (d) show that the choice of weights can affect
the outcome even with filters of the same length – the simple moving average appears to
smooth more than the local polynomial.

These plots also illustrate that, as noted previously, the filters cannot be applied
over the entire range of the data. In panel (b), for example, smoothed values cannot be
computed for the first and last 30 time points. This ‘end effect’ is less serious in panels
(c) and (d), which use shorter filters. �

This example shows that the results of any smoothing exercise are highly dependent
on the filter used. In the next section, we develop a framework within which to think
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about the implications of such a choice. This will also yield insights into some other
applications of filters.

2.3 Linear filters

In everyday life, ‘filtering’ describes a process by which mixtures are separated into their
component parts, often to remove impurities. It is no accident that the term is also used
in the context of smoothing a time series. One might, for example, regard a particular
series as consisting of an underlying trend with some irregular variation (the ‘impurity’)
superimposed. Ideally, the effect of smoothing will be to remove the irregular variation,
leaving just the trend (see Figure 2.8).

Linear filter

Discarded component
(‘irregular’)

Original series Filtered series (‘trend’)

Figure 2.8 The use of a linear filter to separate a time series into ‘trend’ and ‘irregular’
components.

Continuing this analogy, the choice of filter for a particular application depends on
what we want to extract. If, for example, we know that any trend will be linear, then we
should use a filter through which linear trends will pass. Intuitively, it is fairly obvious
that this can be achieved using a filter based on local linear smoothing, as illustrated
in Figure 2.6. Similarly, if we think that a trend will be a polynomial then we could
use a local polynomial filter of the same degree. In fact, however, there are many other
filters that allow polynomials to pass through. It can be shown (Brockwell and Davis,
1991, Exercise 1.2) that if the original series is a polynomial of degree p and the weights
satisfy the conditions

k∑
j=−k

wj = 1 and
k∑

j=−k

j rwj = 0(r = 1, . . . , p),

then the original and filtered series are identical. Consider, for example, Spencer’s 15-point
filter , which has weights wj = w∗

j /320 and w∗
j as follows:

j 0 ±1 ±2 ±3 ±4 ±5 ±6 ±7
w∗

j 74 67 46 21 3 −5 −6 −3 . (2.9)
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It is easy to check that these weights satisfy
∑7

j=−7 wj = 1,
∑7

j=−7 jwj = 0,∑7
j=−7 j 2wj = 0 and

∑7
j=−7 j 3wj = 0. This filter will therefore allow linear, quadratic

and cubic polynomials through; it could therefore be seen as an alternative to (2.8), if
the aim is to extract such a polynomial.

This demonstrates that to choose an appropriate filter, more is required than simply the
ability to extract a polynomial trend of specified degree: an infinite number of filters will
achieve this. They differ in the other kinds of structure that will pass through: it would
be useful to know what such structures might look like. Moreover, in an exploratory
analysis it seems premature to choose methods based on assumed forms for the underlying
trends – recall that one aim of such an exercise is to allow the data themselves to guide the
subsequent analysis (a further point is that if the underlying trend really is a polynomial, it
is best estimated using the methods described in Chapter 3 rather than using a filter). It is
therefore necessary to develop a more general framework to understand the mechanisms
of filtering. One way forward is to think about oscillations at different frequencies.

2.3.1 Frequency considerations

It is well known that any sequence y1, . . . , yT can be expressed as a sum of sine and
cosine waves. Let �T/2� denote the integer part of T/2 (equal to T/2 if T is even and
to (T − 1)/2 if T is odd), and define

fp = p

T
(p = 0, 1, . . . , �T/2�) . (2.10)

Then, for t = 1, . . . , T , it can be shown that

yt = a0 +
�T/2�∑
p=1

(
ap cos 2πfpt + bp sin 2πfpt

)
, (2.11)

where the Fourier coefficients
{
ap, bp

}
are given by

ap = 1

T

T∑
t=1

yt cos 2πfp (p = 0, T /2),

ap = 2

T

T∑
t=1

yt cos 2πfpt (p �= 0, T /2) (2.12)

and

bp = 2

T

T∑
t=1

yt sin 2πfpt for all p.

Equation (2.11) is called the Fourier representation of the sequence (yt ). Notice the
following (see also Figure 2.9):

• When p = 0, cos 2πfpt = cos 0 = 1 for all t ; hence a0 = T −1 ∑T
t=1 yt = y is just

the mean of the sequence.
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• A graph of ap cos 2πfpt + bp sin 2πfpt against t is a sine wave that repeats itself
every T/p time units. This represents an oscillation around the overall mean of the
sequence. The amplitude of the oscillation (i.e. the maximum departure from the
mean) is √

a2
p + b2

p = cp , say. (2.13)

The quantity fp = p/T is called the frequency of the oscillation: it is the number
of cycles per unit time.

• p can only take the value T/2 when T is even. In this case, fT/2 = 1/2 and bT/2 =
2T −1 ∑T

t=1 yt sin πt = 0, since sin πt = 0 whenever t is an integer. Therefore,
when T is even, only the cosine term contributes to the Fourier representation at
the highest frequency.
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Figure 2.9 Fourier approximation of a sequence. Top row: specimen sequence (black),
together with successive approximations. Bottom row, first panel: line spectrum for the
specimen sequence. Remaining panels: individual components in the Fourier approxima-
tions, on a common scale.

Recall now that a trend, according to the definition in Chapter 1, represents long-term
variation. In the Fourier representation of a time series, the sine waves associated with
high frequencies (i.e. large values of p) oscillate rapidly; these frequencies are therefore
largely irrelevant as far as trend is concerned. This suggests that the trend in a series
could be approximated by retaining just the first few terms in (2.11):

ỹt = a0 +
M∑

p=1

(
ap cos fpt + bp sin fpt

)
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for some value of M ≤ �T/2�. This is illustrated in the top row of Figure 2.9, which
shows the Fourier representation of a sequence displaying a clear trend. Setting M = 0
yields ỹt = a0, which is constant; adding successive terms improves the accuracy of the
approximation until, when all terms have been added, a perfect reconstruction is obtained.
The final three plots in the bottom row show the individual sine waves added at each
stage. As expected, the amplitude decreases for higher frequencies.

To visualise the relative contribution of each frequency in a Fourier representation,
we could plot the amplitudes

{
cp

}
defined in (2.13). However, the squared amplitudes

are usually of more interest. In statistical terms, this can be justified via the relationship
(Chatfield, 2003, Section 7.3)

T∑
t=1

(y − y)2 =
T∑

t=1

(y − a0)
2 =

�T/2�∑
p=1

c2
p/mp, (2.14)

where mT/2 = 1 and mp = 2 for all other values of p. The left-hand side here is essentially
the variance of the sequence (yt ); the right-hand side is a sum of contributions from each
frequency. Therefore the quantity c2

p/mp can be thought of as the variance explained
by sinusoidal oscillations at frequency fp. A plot of c2

p/mp against p is called a line
spectrum: see the first plot on the bottom row of Figure 2.9. In this example, the trend is
evident from the large value at the lowest frequency.

Having established that trends contribute primarily to the low frequency components
in a Fourier representation, it is natural to ask: How do other types of sequence manifest
themselves? Obviously, different sequences have different frequency properties. Recall,
however, that in some applications it may be appropriate to regard a series as consisting
of ‘trend’ plus ‘irregular variation’. In the absence of autocorrelation, the latter component
could be regarded as a white noise sequence (see Section 2.1.3). It can be shown that,
on average, the line spectrum of a white noise sequence is flat–the amplitudes of the
components are expected to be the same at all frequencies. Therefore, we would expect a
trend component to contribute primarily to the low frequencies whereas irregular variation
will contribute to all frequencies.

2.3.2 The convolution theorem and filter design

We are now in a position to return to the problem of choosing a filter. It should now be
clear what is required to extract a trend: we need a filter through which only low frequency
components will pass. The key to finding such a filter is the convolution theorem , so called
because an expression of the form (2.6) is known as a convolution of the sequences (yt )

and
(
wj

)
. A rigorous mathematical treatment is well beyond the scope of this book: we

therefore give a heuristic presentation that sacrifices the finer points of detail, but hopefully
conveys the main idea. A full development can be found in Percival and Walden (1993,
Chapter 3).

If T is very large, the frequencies fp in (2.10) will be close together and will effec-
tively fill the range (0, 1/2). In this case, it seems reasonable to approximate the line
spectrum

{
c2
p/mp

}
by a continuous function G(f ) (imagine joining the points in the

bottom left panel of Figure 2.9). We will refer to G(f ) simply as the spectrum of the
sequence (yt ). In a similar vein, we could consider the sequence

{
wj

}
of filter weights in

(2.6) and define a spectrum H (f ) proportional to
[
a∗(f )

]2 + [
b∗(f )

]2
, where a∗(f ) =∑k

j=−k wj cos (2πf ) and b∗(f ) = ∑k
j=−k wj sin (2πf ). The essence of the convolution
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theorem is that the spectrum, G̃(f ) say, of the filtered sequence (ỹt ) is proportional to
G(f ) H (f ). The ‘weight spectrum’ H (f ) is called the squared gain of the filter.

The first implication of the convolution theorem is that we can learn a lot about
the properties of a filter by studying its squared gain. It also provides an opportunity
to specify a desired form for H (f ) and to search for a filter of given length that will
reproduce this as closely as possible. For example, if features on timescales of less than
a couple of years are of little interest, one could attempt to construct a low-pass filter
(i.e. a filter that only allows low frequencies through) for which H (f ) is effectively
zero at frequencies corresponding to cycle lengths under two years, but close to 1 at
lower frequencies. Methods for constructing such a filter are described by Percival and
Walden (1993, Chapter 5). Perhaps the simplest is least squares filter design: for a low-
pass filter allowing frequencies below f0 through, the corresponding weights in (2.6) are
proportional to

w0 = 2f0 and wj = sin 2πf0j

πj
(j = ±1, . . . ,±k). (2.15)

As might be expected, larger values of k give more flexibility and hence generally more
accurate filters; however, recall from Example 2.6 that longer filters have more pronounced
end effects. In practice therefore, the choice of k is a compromise.

Example 2.7
Figure 2.10 shows four different squared gains. Those in Figure 2.10(a) correspond to the
filters used in the bottom panels of Figure 2.7. Apart from some wiggles, the squared gain
of the 15-point moving average is effectively zero at frequencies greater than about 0.06
cycles per unit time. The 15-point cubic polynomial filter, however, allows frequencies
up to about 0.1 to pass through. This explains why Figure 2.7(c) appears smoother than
Figure 2.7(d) – the moving average removes more high frequency oscillations.

Figure 2.10(b) shows the squared gains for two 61-point filters; the horizontal axis
is truncated at 0.25 to show the structure more clearly. The first filter is the five year
moving average used in Figure 2.7(b); the second is designed to remove frequencies with
cycle lengths below 24 time units (i.e. two years, if the data are monthly). The frequency
corresponding to such a cycle length is 1/24 = 0.0417 cycles per unit time; the filter
weights are obtained by putting f0 = 1/24 and k = 61 in (2.15). The squared gain for
the corresponding ‘ideal’ filter is also shown. Although the designed filter approximates
this reasonably well, notice that its squared gain exceeds 1 for frequencies between about
0.02 and 0.04 (cycle lengths between 1/0.04 = 25 and 1/0.02 = 50 time units). It will
therefore produce a filtered series showing enhanced oscillations in this frequency range,
which are associated more with the characteristics of the filter than with any properties
of the underlying data. �

This example demonstrates that filtering can have unexpected consequences, such as
the introduction of spurious oscillations in particular frequency ranges. Care is therefore
required in the interpretation of a filtered series. For exploratory purposes, when a filter
is used merely as an aid to visualisation, it probably suffices to be aware of the kinds
of artefacts that can be introduced – a plot of the squared gain can be helpful in this
respect – and to bear these in mind when interpreting the results.
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Figure 2.10 Squared gains for selected filters: (a) 15-point filters used in Figures 2.7(c)
and (d), and (b) 61-point filter used in Figure 2.7(a), along with a 61-point low-pass filter
designed to remove frequencies with cycle lengths below 24 time units.

2.3.3 Dealing with end effects

We have already noted that (2.6) yields smoothed values only between times k + 1 and
T − k. The lack of output at the ends of the series is slightly unsatisfactory, particularly
for longer filters. It is therefore customary either to modify the filter at each end of
the series or to extend the data sequence artificially, so as to enable the calculation of
smoothed values at all times between 1 and T . There is no single ‘right’ way to do this,
and a variety of procedures are in use. Some of the more common are as follows:4

• At each time point, calculate a weighted average of just the available observations.
For example, at time t = 1 the values y1, . . . , yk+1 are available, so one could
calculate the smoothed value

ỹ1 =
∑k

j=0 wjy1+j∑k
j=0 wj

. (2.16)

• For local polynomial smoothing, at each time point use a polynomial fitted just to
the available observations. Note that, in general, this is not the same as deriving
the weights from a full local polynomial fit and then applying a formula such
as (2.16). To see this, consider smoothing a hypothetical series in which the first
three observations are y1 = 15, y2 = 20 and y3 = 25, using local linear fitting to

4 All of these are implemented in the R command linear.fil, supplied as part of the software
accompanying this book.
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successive groups of five observations. The observations available for smoothing at
time t = 1 are y1, y2 and y3, which fall on a straight line here; hence fitting a line
to them will yield the result ỹ1 = 15. On the other hand, we saw earlier that when
all required observations are present, local linear fitting places equal weight on
all of them. In this case, equal weighting of just the available observations yields
ỹ1 = (15 + 20 + 25) /3 = 20. In this simple example, the local linear fit seems
preferable since it tracks the trend more closely. It can be shown that this is a
feature of local polynomial fitting in general; this is discussed further in Chapter 4.

• Add k artificial data values to the beginning and end of the series. A simple strategy
is to make the artifical values at the beginning all equal to the first observation y1

and those at the end to the last observation yT . In series with a strong seasonal
component (and a seasonal period of S time units, say), this may be regarded as
too simplistic and the artificial values could be obtained by replicating the first and
last S observations as necessary to make up the required length.

• Use yT −k+1, . . . , yT in place of y1−k, . . . , y0 and use y1, . . . , yk in place of
yT +1, . . . , yT +k . This is sometimes referred to as a ‘circular’ filter or as a periodic
extension of the series–imagine wrapping the observations y1, . . . , yT round a
circle, so that yT and y1 are next to each other. Clearly, this approach is not very
suitable for application to series showing clear trends, since in this case the values
at the beginning and end of the series will be very different. However, of the
techniques described here this is the only one that is currently implemented in the
built-in filter command in R.5

Of course, the properties of a filtered series obtained using any of these methods will
be different at the ends than in the central portion. This is unavoidable, but needs to be
accounted for in any analysis based on smoothing. This is discussed further in Chapter 4.

2.3.4 Other applications

Until now, we have discussed filters as a means of smoothing a series so as to see more
clearly the nature of any apparent trends. However, their use extends considerably beyond
this. We now consider two further applications: removal of trend and seasonality.

Recall from Section 1.2 that sometimes it is necessary to identify and remove any
trends so as to focus on aspects of real interest. In such situations, with reference to
Figure 2.8, interest lies in the ‘irregular’ component rather than the ‘trend’. Of course,
since the original sequence (yt ) is just the sum of the two components, it is easy to recover
the irregular component given the smoothed version ỹt : just calculate the difference
yt − ỹt . However, from the definition of ỹt at (2.6), we have

yt − ỹt = yt −
k∑

j=−k

wjyt+j =
k∑

j=−k

vj yt+j , say, (2.17)

where vj =
{

1 − wj j = 0,

−wj j �= 0.

Notice that the expression for the ‘detrended’ series (2.17) looks identical to (2.6), except
that the weights

{
wj

}
have been replaced by another collection

{
vj

}
. Using the definition

5 Version 2.2.0.
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of vj given above, and remembering that
∑k

j=−k wj = 1, we find that

k∑
j=−k

vj = 1 −
k∑

j=−k

wj = 0.

This shows that trends can be removed from a series using a filter with weights that sum
to zero. The squared gain for such a filter is close to zero at low frequencies, but not
at high frequencies: it is a high-pass filter . It may be worth pointing out that since the
weights do not sum to one, these filters are not weighted averages. It is therefore not
appropriate to deal with end effects using a formula such as (2.16), since it is not clear
what the denominator should be. In general, to avoid confusion it is probably easiest to
calculate detrended series as yt − ∑k

j=−k wjyt+j rather than
∑k

j=−k vj yt+j , since end
effects can be dealt with easily, using any of the methods described above, in the former
case but not the latter. However, the interpretation of trend removal as high-pass filtering
can be a useful aid to understanding.

Another use of filters is for the removal of seasonality. So far we have dealt with
this in a simple way, subtracting or dividing each observation by the mean value for
the time of year. For series showing little trend and a regular seasonal pattern, this is
often perfectly adequate. However, in the presence of trends or if the seasonal cycle is
not exactly regular, something more sophisticated may be needed. Consider first the case
when a more or less regular seasonal cycle is present along with a clear underlying trend,
as in Figure 2.11(a). In this situation, if the trend can be removed without disturbing the
seasonal cycle then the latter can be estimated from the detrended series. For monthly
data with an annual cycle, a rough estimate of the trend can be obtained using a filter of
length 13, with weights w0 = w±1 = · · · = w±5 = 1/12, w±6 = 1/24. This is effectively
a moving average over a period of one year; the requirement for the filter length to be
an odd number is accommodated by extending the length of the filter to 13 rather than
12 and halving the weight at each end. According to (2.17), the corresponding high-pass
filter, yielding the detrended series, has weights

v0 = 1 − 1/12 = 11/12, v±1 = · · · = v±5 = −1/12, v±6 = −1/24. (2.18)

The squared gain of this filter is shown in Figure 2.11(b). Notice that it passes higher
frequencies, removes most lower frequencies and does not affect the frequency of the
annual cycle, since the squared gain is 1 here.

The result of applying a filter such as (2.18) will be a series showing seasonality but
no trend, as in Figure 2.11(c) (here, end effects have been dealt with by replicating the
first and last 12 observations at the start and end of the series respectively, as described
in Section 2.3.3). Denote the ‘seasonal averages’ of this detrended series by m∗

1, . . . , m
∗
S ,

where S is the number of observations per year (so that S = 12 for monthly data). These
seasonal averages can themselves be regarded as estimates of the seasonal cycle; however,
it is conventional to subtract their mean so that the result can be interpreted as an average
oscillation about an ‘underlying’ level:

mi = m∗
i − 1

S

S∑
j=1

m∗
j (i = 1, . . . , S).

The original series can now be ‘deseasonalised’ by subtracting the estimated seasonal cycle
{mi : i = 1, . . . , S} from the original observations, as in Figure 2.11(d). If necessary, the
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Figure 2.11 Removal of seasonality from an artificial monthly series containing both
trend and seasonal components: (a) original series, (b) squared gain for the filter

{
vj

}
defined by (2.18) (dashed line indicates the frequency of the annual cycle), (c) detrended
series, (d) original series after subtraction of the estimated seasonal cycle.

result could be used as the starting point for a more refined estimate of the trend and the
procedure could be repeated.

In the above procedure, the use of seasonal averages to estimate the seasonal cycle is
sensible if this cycle itself is fairly constant. However, in environmental contexts this is
often unrealistic – for example, in many areas climate change is associated with changes
in seasonal patterns of temperature and precipitation (for example Hulme et al ., 2002;
Räisänen et al ., 2004), and environmental changes may lead to shifts in the seasonal cycle
within ecosystems (Rosenzweig et al ., 2007, Section 1.3). In this case, an alternative is to
estimate the changing cycle at time t using a filter that places all its weight on observations
at times t ± S, t ± 2S, . . .. For example, given monthly data the seasonal cycle for January
of a particular year could be estimated as a weighted average of the detrended January
observations in neighbouring years. Denoting by y̌t the value of the detrended series at
time t as in Figure 2.11(c), such an estimate of the seasonal cycle at time t is

�∑
j=−�

w
(s)
j y̌t−Sj

for filter weights
{
w

(s)
j : j = 0,±1, . . . , ±�

}
with

∑�
j=−� w

(s)
j = 1. The superscript (s)

is used to emphasise that these are weights in a ‘seasonal’ filter. The corresponding
deseasonalised value is

y̌t −
�∑

j=−�

w
(s)
j y̌t−jS .
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The squared gain for the filter
{
w

(s)
j

}
will be close to zero for all frequencies except

those associated with a cycle length of S time units. Such a filter, which only passes
frequencies in a limited range, is called a band-pass filter .

The ideas discussed here form the basis for classical techniques designed to sepa-
rate a series into ‘trend’, ‘seasonal’ and ‘irregular’ components (Kendall and Ord, 1990,
Chapters 3 and 4; Brockwell and Davis, 1991, Section 1.4; Chatfield, 2003, Section 2.6),
as well as more modern methods such as the ‘STL’ procedure to be discussed in Chapter 4.
We have focused on the case when trend and seasonal components are removed by sub-
traction: for series such as the Dutch wind speed data, in which the variability increases
with the mean, it may be more appropriate to use division instead (as in the earlier
examples in this chapter). In this case, the detrended or deseasonalised series cannot be
interpreted strictly as the output of a high-pass filter; nonetheless, the basic principle of
separating components at different frequencies remains a helpful aid to understanding.

We conclude this discussion of filters with a caveat. As we have seen, the aim of
filtering is to extract structures of interest: this is a useful aid to visualisation in the
exploratory phase of an analysis. However, since filtering changes the properties of a
series, care needs to be taken with any subsequent analyses. It may be tempting, for
example, to smooth a series so as to visualise any apparent trends more easily and then to
carry out one of the tests described in the next section to see if the trends in the smoothed
series are ‘genuine’. However, this would not be appropriate: even in the absence of
underlying trends, smoothed series will show ‘trend-like’ features such as a concentration
of variability at low frequencies, and this may lead to incorrect test results. Put another
way: if a test shows evidence for a trend in a smoothed series, this could be due either
to a genuine underlying trend or to an artefact of the smoothing procedure. In general,
it is unwise to analyse filtered data without a clear understanding of the implications: at
the very least, it is necessary to account somehow for the filtering when interpreting the
results. As a general rule, it is probably best to avoid such problems altogether by using
only the original data in any subsequent analyses. In this case, the aim of filtering is to
provide insight into the types of structure that may be present: the results can be used to
guide the choice of subsequent analysis.

2.4 Classical test procedures

Finally in this chapter, we discuss some procedures that are commonly used to test for
the existence of trends in environmental time series. For further details, see El-Shaarawi
(1993). The tests described here have been used extremely widely, with recent environ-
mental applications including Wasmund and Uhlig (2003), Carslaw (2005), Hamed (2008)
and Chen and Grasby (2009). The Mann–Kendall and seasonal Kendall tests (see, for
example, Chen and Grasby, 2009; Esterby, 1993; Hirsch, Slack and Smith, 1982) are
classic nonparametric tests used in the literature to assess monotonic trends. They are
perhaps the most resilient survivors of a range of nonparametric tests that were once pop-
ular but, with the advent of modern computing and model based statistics, have fallen into
disuse – see Kendall and Ord (1990, Chapter 2) for a review. They can handle missing
data and do not make any distributional assumptions, since they use the relative magni-
tudes of the data rather than their absolute values, but they do in general assume that the
observations are independent. In R, implementations can be found in the Kendall library
(McLeod, 2005).
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The original Mann–Kendall test for trend is a nonparametric test that applies to
monotonic trends only. The null hypothesis is that the data are realised values of inde-
pendent, identically distributed random variables. Clearly, in this case no trend is present.
Given a data sequence y1, . . . , yT , the differences {d (t1, t2) = yt2 − yt1 : t2 > t1} between
all pairs of observations are calculated. Positive differences are then assigned the value
1, negative differences are assigned the value −1 and zero differences are assigned the
value zero. The test statistic is then the sum of these assigned values, i.e.

S =
T −1∑
t1=1

T∑
t2=t1+1

sgn [d (t1, t2)] ,

where

sgn [d (t1, t2)] =
⎧⎨
⎩

1 ifd (t1, t2) > 0,

0 ifd (t1, t2) = 0,

−1 ifd (t1, t2) < 0.

From this definition it is clear that S can take any integer value between −T (T −
1)/2 and T (T − 1)/2. It can be shown that S is proportional to a nonparametric index
of correlation, Kendall’s τ (Wackerly, Mendenhall and Scheaffer, 2007, Section 15.10),
between the observations and the time index t . In the absence of ties (i.e. if d (t1, t2) is
never zero), we have S = T (T − 1)τ/2. When S = ±T (T − 1)/2, we have τ = ±1 and
hence a perfect monotonic relationship between the observations and the time index. Under
the null hypothesis of no trend, S is expected to be close to zero. Large negative values
indicate downward trends and large positive values indicate upward trends. For small
values of T , the null distribution of the test statistic can be tabulated exactly (Kendall,
1975); for larger values (T ≥ 40 is sometimes suggested as a rule of thumb), this can be
approximated by a normal distribution with mean zero and variance T (T –1)(2T + 5)/18.

If the Mann–Kendall test indicates that a trend is present, it is natural to try
and quantify its magnitude. The Theil–Sen slope estimator (Sen, 1968) is com-
monly used for this purpose: this is defined as the median of the pairwise slopes
{[d (t1, t2)] / [t2 − t1] : t2 > t1}, and can be regarded as a ‘typical’ index of change over a
unit time period.

Hirsch, Slack and Smith (1982) developed the seasonal Mann–Kendall test for trend
analysis of monthly water quality data and Hirsch and Slack (1984) present a version of
the test that accommodates serial dependence. Seasonality is handled by calculating a test
statistic that is a sum of contributions from individual seasons and no assumption about
the form of the distribution function of the data is made. Libiseller and Grimvall (2002)
extend these techniques by developing the partial Mann–Kendall test, which allows the
inclusion of covariates in the Hirsch and Slack test for trends with serially correlated data
collected over several seasons.

In any trend test the probability of rejecting the null hypothesis in the presence
of a genuine trend will depend on the sample size (i.e. record length), the magnitude
of the trend and the variability of the data about the trend. For some test procedures,
statistical power calculations can be used to evaluate the probability of rejecting the
null hypothesis explicitly as a function of such factors (see Davison, 2003, Section 7.3.2
or Rice, 2006, Section 11.2.2 for some simple examples in a slightly different context).
However, power calculations typically require precise specification of the form of the trend
as well as the distribution of the observations: therefore they are not readily adapted to
the nonparametric tests described above, except under some precisely specified parametric
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model that serves as a benchmark. Nonetheless, for any test procedure it will usually be
difficult or impossible to detect trends with any confidence in very short time series.
For ecological applications in particular, Wilson, Hammond and Thompson (1999) give
some useful guidance on how to think about what data may be required for the reliable
detection of trends. The ability to detect environmental trends has also been investigated
by Gerrodette (1987) who considered linear trends in ecological data and by Frei and
Schär (2001) who were concerned with the trends in extreme rainfall events.

In the context of environmental monitoring, it is sometimes required to examine the
evidence for changes within a system on the basis of observations collected on a handful
of sampling occasions but at several spatial locations. In such situations, rather than trying
to draw any definitive conclusions about trend, perhaps the most that can be achieved is to
determine whether there are any significant differences between the sampling occasions. If
data from the different locations can be considered as statistically independent, a simple
way to achieve this is using a two-way analysis of variance (ANOVA) as described
by Manly (2001, Section 5.6). In the presence of spatial dependence, however, more
sophisticated methods are required (see Section 6.1).

The tests described above are designed primarily for retrospective or offline analysis.
However, it is often of interest to detect changes as they occur. For example, when
monitoring river water quality near a sewage treatment works, it is desirable to detect
any deterioration as quickly as possible so that appropriate corrective action can be taken.
Control charts provide a simple tool for online monitoring of this type. The most common
control charts are designed to monitor the mean level and variability of a series. For the
mean, at each time point the running mean of the observations is computed: ȳt = St/t

say, where St = ∑t
j=1 yj . In the absence of any change and under some assumptions

about the nature of the underlying process (for example that the observations are drawn
independently from normal distributions with a common variance), it is possible to define
limits within which ȳt should lie with specified probabilities. If these probabilities are
chosen appropriately then the presence of a potential change is suggested whenever the
values fall outside the limits. It is customary to display the results graphically, with
the running means and control limits plotted against the time index. An alternative that
typically allows changes to be detected more rapidly is to produce a cusum chart in
which limits are set for the cumulative deviations from some target value. The variability
of a process can be monitored in a similar way, but using the sample range or standard
deviation instead of the mean. Manly (2001, Section 5.7) gives a brief introduction to
control charts in an environmental monitoring context; for a more detailed discussion of
the available methods, see Hawkins and Olwell (1997), Ledolter and Burrill (1999) or
Montgomery (2009).

Test procedures such as those reviewed above are widely used. However, their effec-
tive use requires caution, good judgement and an awareness of the underlying logic. In
particular, it is important to recognise that the null hypothesis for many of the tests is
specified far more precisely than the innocuous-sounding ‘absence of trend’. For example,
although the Mann–Kendall test makes no assumptions about the form of the distribution
from which the observations are generated, the null hypothesis is that the observations are
independently and identically distributed. This in itself is an extremely strong assumption.
According to the logic of significance tests (see Section 1.4.3), a statistically signifi-
cant result suggests that the null hypothesis is false. It is not appropriate to conclude
from this that the observations support the specific alternative of interest. If a significant
Mann–Kendall test result is obtained, one may legitimately conclude that the observations
are not independently and identically distributed. However, given the complexity of most
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environmental systems, such a conclusion is hardly groundbreaking. The test result may
indeed indicate that a trend is present, but it could also indicate that the observations
are autocorrelated (indeed, we have already seen that it can be difficult to distinguish
between autocorrelation and trends when interpreting the sample ACF) or that they are
influenced by other factors and hence not independently distributed. This is not to say
that hypothesis testing is of no value in environmental applications: rather, it is important
to understand precisely what the null hypothesis is and to ensure that it provides at least
a plausible representation of the system. Rejection of a plausible null hypothesis gives
much more credence to the alternative of interest. Often, therefore, tests for trend require
rather more sophistication than these classical procedures.

A further caveat regarding trend tests is that often research questions arise in
response to observations that are considered to be unusual. Suppose, for example, that an
investigation into temperature trends is prompted by the observation that three of the
warmest years in a particular century occurred in the final decade of the century. In this
situation, it would be inappropriate to incorporate the observations from the final decade
when testing for trends, since in this case the observations being used to test a hypothesis
would include those that suggested it in the first place. Any random sequence will
occasionally produce clusters of high values, and to test for trends only after observing
such a cluster will naturally bias the results.6

2.5 Concluding comments

A wide range of techniques has been reviewed in this chapter. Many of them are well
established in one or more areas of environmental science, and it is perhaps natural to ask
why they have all been included under the heading ‘exploratory analysis’ – surely, after
dealing with visualisation, serial dependence, smoothing, trend and seasonality removal
and testing, there is little more to be said.

It is true that, to some extent, the ideas presented above form the basis for everything
else in the book. However, there is a shift of emphasis in the next and subsequent chapters,
insofar as all of the material is based on different types of statistical model, specified in
terms of the probability distributions from which the data are assumed to be generated.
As described in Section 1.1, such specifications enable scientific questions to be framed
precisely and without ambiguity, and most modern statistical methods are based on them.
One advantage of this approach is that it offers the potential to represent explicitly the
complexity of the process under study, and hence to account properly for all relevant
information. In contrast, the methods described above tend to focus on the various issues
separately, which can lead to difficulties – for example, the interpretation of a sample
autocorrelation function depends on whether or not a trend is present, but any of the
standard tests for trend are themselves affected by the presence of autocorrelation. It is
therefore unwise to draw conclusions solely on the basis of these methods: they are best
used to indicate the issues that need to be considered in the quest for an appropriate model.
On completion of a thorough exploratory analysis, however, the way forward should be
reasonably clear.

6 To avoid any ambiguity this is not an argument against global warming. The evidence for global
warming is far more wide-ranging than a post hoc trend test.
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3

Parametric modelling –
deterministic trends

As described in the previous chapter, preliminary exploration of the data is often a prelude
to a more detailed analysis based on some form of statistical model. Models provide the
opportunity to account simultaneously for all relevant structures, and hence to place trends
in their proper context. Furthermore, writing down a model forces the analyst to formulate
their questions precisely, usually by translating subject-matter concerns (‘Is there evidence
for a systematic decline in North Sea haddock stocks?’) into questions about numerical
quantities appearing in the model (‘Is the trend slope negative?’). A related point is that
a model based analysis is transparent: a fully specified model encapsulates all of the
assumptions upon which the results are based so that these assumptions are immediately
clear and, as we will see, there are usually well understood diagnostic techniques for
checking them. Another advantage is that, for many models, particular statistical proce-
dures are known to be optimal with respect to estimation and testing: this provides some
reassurance that one is extracting the maximum possible information from hard-earned
data. Finally, most (if not all) statistical models are probabilistic in nature: this provides
the opportunity to quantify explicitly the uncertainty in conclusions. For reasons such as
these, modern statistical thinking is fundamentally model-based. For some insight into
this way of thinking, and an extremely comprehensive overview of modern statistics, the
excellent text by Davison (2003) is strongly recommended.

In the specific context of a trend analysis, perhaps the simplest model one might
consider is an adaptation of Equation (1.1) in Section 1.1. According to that equation,
the observation at time t is considered as the realised value of a random variable Yt with
expected value μt . It follows that we can write

Yt = μt + εt , (3.1)

where εt is a random variable with zero expectation. Equation (3.1) is a statistical model
in which the observations are considered to be randomly scattered about the sequence
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(μt ), which may be referred to as the ‘trend function’. Taking expectations of both sides
of (3.1), we see that μt is also the expected value of Yt .

In this chapter, we consider estimation and testing for situations in which μt is
assumed to have a particular mathematical representation: this is an example of a para-
metric model . Some examples are given in Table 3.1. In each case, Greek letters denote
the values of parameters that determine the exact behaviour of the trend, possibly given
the values of other relevant variables such as the {xit } in models 3 and 4. We refer to
such trends as deterministic, to distinguish them from an alternative class of parametric
models to be considered in Chapter 5.

Table 3.1 Examples of parametric models for deterministic trends.

Model Mathematical representation

1. Linear trend μt = β0 + β1t

2. Growth curve (logistic model) μt = α
[
1 + β exp (−γ t)

]−1

3. Trend linearly associated with p other quantities –
xit is the value of the ith such quantity at time t

μt = β0 + ∑p

i=1 βixit

4. Logarithm of trend linearly associated with
changes in other quantities

log μt = β0 + ∑p

i=1 βixit

Coupled with the basic trend equation (3.1), the first three models in Table 3.1 are all
regressions; it is therefore sometimes appropriate to refer to μt as the ‘regression function’
rather than the ‘trend function’. The regression formulation is perhaps most obvious in
the case of model 3, which is a standard multiple regression model. The linear trend
(model 1) regresses the variable of interest upon the time index t : this model, with various
modifications, is ubiquitous throughout the environmental science literature. Model 2 is
again a regression upon t , but the trend is no longer linear: this is a simple model
for phenomena such as population growth (e.g. Haddon, 2001, Section 2.4). Multiple
regression (model 3) is useful for trying to identify specific factors that are linked to
changes in the variable of interest over time. For example, to investigate an apparent
change in the incidence of respiratory illness in a particular location, one might consider
regressing monthly reported incidents upon indices of air quality. The nature of this model
is slightly different from that of the previous two, in that the explanatory variables (i.e.
the {xit }) may themselves vary irregularly through time. However, we still refer to this
as ‘deterministic’, because the trend is completely determined once all relevant quantities
(i.e. the parameters and explanatory variables) are known.

A regression model is said to be linear if the parameters enter linearly into the
regression function, as in models 1 and 3 in Table 3.1 (note the distinction between this
and a linear trend , where the linearity refers to the time index rather than the parameters).
Thus model 4 is also nonlinear, since here μt = exp[β0 + ∑p

i=1 βixit ] is a nonlinear
function of the parameters β0, . . . , βp. The reason for considering it separately is that the
parameter nonlinearity can be removed by applying a simple transformation to μt (i.e. by
taking logs). In such situations, models can often be fitted much more easily than for other
types of nonlinear model. Notice that it is the trend μt that is transformed, not the data
{yt }. This is one of the key features of generalised linear models, which are considered
further in Section 3.5.

As usual, when using regression methods in a trend analysis, most of the difficulties are
caused by the potential presence of autocorrelation and other factors that affect the variable
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of interest. To illustrate the issues involved, in the next section we discuss the linear
trend model in detail. This provides the necessary foundations for the more complicated
models introduced subsequently. The discussion assumes operational familiarity with basic
concepts of regression modelling, such as least squares fitting and testing hypotheses about
regression coefficients. The necessary background material can be found, for example,
in Draper and Smith (1998), Weisberg (2005), Rice (2006, Chapter 14) or Wackerly,
Mendenhall and Scheaffer (2007, Chapter 11).

3.1 The linear trend

In this section, we focus mostly on the case when the observations are regularly spaced.
This is purely for notational convenience, since the basic ideas can be applied with little
or no modification to irregularly spaced series. The regular spacing allows us to write
y1, . . . , yT for the observations and Y1, . . . , YT for the corresponding random variables.
The linear trend model is most commonly specified as

Yt = β0 + β1t + εt (t = 1, . . . , T ), (3.2)

where ε1, . . . , εT is a sequence of random variables with zero mean. We follow standard
practice in referring to these as ‘errors’, although this terminology is slightly pejorative:
it suggests that in an ideal world they would not be present, whereas in the context of
environmental time series they are a convenient and necessary device for representing
variation that cannot be explained otherwise using the available data.

In the case when the errors all have the same variance, σ 2 say, and are uncorrelated
(i.e. they form a white noise sequence – see the end of Section 2.1.3), (3.2) is just a linear
regression of Y on t , and can be fitted easily using least squares in any standard software
package. In the discussion below, it will be helpful to use a notation that extends directly
to more general regression models. This can be achieved by writing the model as

Yt = β0 + β1xt + εt (t = 1, . . . , T ), (3.3)

where xt = t .
If the errors are normally distributed, or if the sample size is large enough, a test

for trend can be carried out using a t test of the null hypothesis H0 : β1 = 0 against the
alternative H1 : β1 �= 0. This procedure is exactly equivalent to a test for correlation
between the observations {Yt} and the time indices {t}. In addition, standard linear
regression theory enables the construction of confidence intervals for the parameters
β0 and β1 (Draper and Smith, 1998, Section 1.4; Weisberg, 2005, Section 2.8). This
theory is appropriate whenever the errors form a white noise sequence, in which case the
least squares procedure also has appealing optimality properties (Draper and Smith, 1998,
Section 5.2; Weisberg, 2005, Section 2.4).

Example 3.1
Consider the North Sea haddock data from Section 1.3.2. Figure 1.2 suggested that, on
a logarithmic scale, there appears to be a linear trend in biomass. Accordingly, it seems
reasonable to fit the model

log Yt = β0 + β1t + εt ,



64 METHODOLOGY

where Yt is the recorded biomass in the t th year of the record. If we define Y ∗
t = log Yt

and xt = t , this can be written as

Y ∗
t = β0 + β1xt + εt , (3.4)

which has exactly the same form as (3.3). Therefore, to fit this model all that is required
is to use as data the logarithms, rather than the actual values, of the biomass series.

Table 3.2 shows the R output, slightly edited, from such a fit. The coefficient estimates
are β̂0 = 6.0583 and β̂1 = −0.0370 to four decimal places; the associated standard errors
are estimated as 0.1464 and 0.0065 respectively. The error variance, σ 2, is estimated as
0.44232 = 0.1957. Notice that β̂1 has a much smaller standard error than β̂0: the slope
of the trend line is estimated much more precisely than the intercept. We return to this
point later.

Table 3.2 Edited R output for model (3.4) fitted to haddock biomass data.

Call:

lm(formula = logBiomass ~ Time, data = haddock.data)

Coefficients:

Estimate Std. Error t value Pr(›|t|)
(Intercept) 6.058348 0.146390 41.385 ‹ 2e-16

Time -0.036992 0.006543 -5.653 2.02e-06

Residual standard error: 0.4423 on 36 degrees of freedom

Multiple R-Squared: 0.4703, Adjusted R-squared: 0.4556

F-statistic: 31.96 on 1 and 36 DF, p-value: 2.021e-06

The conventional t test of the hypothesis H0 : β1 = 0 is carried out by computing the
ratio of the estimate β̂1 to its estimated standard error and comparing to a t distribution
with the appropriate degrees of freedom. In Table 3.2, the value of the t statistic is −5.653,
with an associated p-value of 2.02 × 10−6. If the underlying assumptions are satisfied,
this leads to an overwhelming rejection of the null hypothesis.

As discussed in Section 2.4, some care is required when interpreting this test result:
strictly speaking, the only thing we have learned here is that the data are not a white
noise sequence. However, the caveats that were discussed previously can now be framed
rather more precisely, since in the current context they all correspond to failures of
modelling assumptions. If these assumptions are satisfied (we will shortly explore methods
for checking them) so that the data really are generated according to a process of the form
(3.3), then we are justified in claiming the existence of a linear trend.

The output in Table 3.2 also contains the multiple and adjusted R2 statistics, both of
which measure the proportion of variation in the data {Yt} that is accounted for by the
trend. The adjusted version is always the smaller of the two, and is arguably preferable
since it takes into account the number of parameters in the model (Draper and Smith, 1998,
Section 5.2). In general, however, it is wise to avoid overreliance on R2 as a measure of
model adequacy: in most applications, it is more important to know about the uncertainty
associated with the use of the model, and this is measured much more directly using the
residual variance or standard deviation. To illustrate the use of this in the present example,
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denote by Ŷt = β̂0 + β̂1t the fitted value at time t : then the residual standard deviation of
0.4423 suggests that under the assumption of normality, there is roughly a 95 % chance
that the actual value Yt will fall within the interval Ŷt ± 2 × 0.4423 = Ŷ ± 0.8846. This
indicates the uncertainty to be expected if the model is used for prediction, although in this
particular case it is difficult to interpret directly since the model is on a logarithmic scale. In
such situations, interpretation can be simplified by converting back to the original scale of
measurement: here, the fitted value Ŷt maps back to exp[Ŷt ] and the range of uncertainty to

(
exp

[
Ŷt − 0.8846

]
, exp

[
Ŷt + 0.8846

]) = (
0.413 exp

[
Ŷt

]
, 2.422 exp

[
Ŷt

])
.

If the model assumptions are valid, the model therefore enables us to predict total
biomass in any year to within a factor of about two and a half. This might not seem
particularly impressive; it is, however, more informative than knowing merely that the
model explains 46 % of the variation in the data.

The final line of Table 3.2 summarises an F test for determining whether the model
has significant explanatory power. Formally this tests the null hypothesis that, with the
exception of β0, the underlying values of all the regression coefficients are zero. Since
this particular model contains only one regression term, in this case the test is identical
to the earlier t test on β̂1 – in fact, the F statistic is just the square of the t statistic
for β̂1 (Davison, 2003, Section 8.5) and yields the same p-value. This is easily verified
from the output given. The F statistic is also closely related to the multiple R2 (Davidson
and Mackinnon, 2004, Section 4.4). Specifically, with a single regression term we have
F = (T − 2)R2/(1 − R2), which, again, is easily verified from the output (T − 2 is the
residual degrees of freedom, given in the output as 36). For readers who do not share
our reservations about the use of R2, the F test can be regarded as testing whether the
observed R2 differs significantly from zero. �

3.1.1 Checking the model assumptions

As indicated already, it is necessary to check the assumptions of any model before
interpreting the results. For many statistical models, checks are usually based on residuals
that represent some measure of discrepancy between data and model. When model (3.3)
is fitted to yield parameter estimates β̂0 and β̂1, the residual at time t is defined as

et = Yt − β̂0 − β̂1xt . (3.5)

If the estimates β̂0 and β̂1 were equal to the ‘true’ parameters β0 and β1, the residual
et would be the same as εt in (3.3). In general, of course, this is not the case, and
the properties of the residuals differ slightly from those of the ‘underlying’ errors {εt }.
Nonetheless, it seems reasonable to expect the residuals to behave more or less like the
errors if the model is adequate. Later, we will investigate this in more detail; for the
moment, however, to fix ideas we proceed informally.

As noted above, least squares fitting is appropriate when the errors form a white noise
sequence. In this case the residuals should appear to be uncorrelated, with zero mean and
constant variance. A variety of graphical techniques, similar to those used for exploratory
analysis in Chapter 2, can be used to check these assumptions. The following diagnostics
can be useful:

• A time series plot of the residuals. If the model is adequate, this should show a
scatter about zero with no obvious structure. Systematic patterns in such a plot
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may suggest that the underlying trend is not linear. If there are many data points
on the plot, it can be helpful to add a smooth curve to aid interpretation – any of
the techniques described in Chapters 2 or 4 could be used for this purpose.

• A time series plot of the squared residuals {e2
t } or of their absolute values {|et |}.

Under the assumption of constant variance or homoscedasticity , if T is large enough
the expected value of e2

t is approximately the same for all t ; therefore, the structure
in such a plot suggests a violation of the assumption. Note, however, that squaring
things accentuates their differences: therefore, a few of the squared residuals are
often much larger than all the others. Since these tend to dominate the visual
impression when plotted, it is usually preferable to work with the absolute values
instead, although we will see below that this does not entirely eliminate the problem.
Again, it can be useful to add a smooth curve to aid interpretation: for this purpose,
the use of a robust smoother such as lowess (see Chapter 4) helps to protect against
artefacts caused by the large values.

• A correlogram of the residuals. If the model assumptions are adequate, this should
be more or less consistent with the correlogram of a white noise sequence.

Strictly speaking, because the residuals are not equal to the underlying errors, they have
slightly different properties and the usual calculations of confidence bands around a non-
parametric smooth, or 95 % intervals for a correlogram, are incorrect. We will see below
that the effect of this can be nonnegligible; however, for all but the smallest sample sizes
such calculations can be used as an informal aid to interpretation. If required, a formal
test for residual autocorrelation can be based on the Durbin –Watson statistic:

DW =
∑T

t=2 (et − et−1)
2

∑T
t=1 e2

t

, (3.6)

providing the observations are regularly spaced. Under the null hypothesis of uncorrelated
errors, DW is expected to take values around 2, although its precise distribution depends on
the number of regression coefficients estimated. Positive autocorrelation tends to produce
smaller values, because successive residuals tend to be more similar to each other than
in the uncorrelated case. The Durbin–Watson test has conventionally been implemented
via rather cumbersome tables of critical values (Greene, 2003, Section 12.7). However,
the exact distribution under the null hypothesis is that of a linear combination of chi-
squared distributions, for which accurate approximations are available in modern statistical
software. In R, for example, the test can be carried out using the dwtest command in
the lmtest package or using the durbin.watson command in the car package.

The diagnostics outlined above are designed to check the three fundamental assump-
tions of the linear trend model fitted by least squares. In addition to these, since the
usual tests for the significance of regression coefficients assume either that the errors are
normally distributed or that the sample size is ‘large enough’, it is useful to assess the nor-
mality of the residuals. The easiest way to do this is using a normal quantile–quantile plot
(Fox, 2002, Section 1.2; Faraway, 2005, Section 4.1) in which the ordered residuals are
plotted against their expected values under the normality assumption. If this assumption
holds, the points on such a plot should fall roughly on a straight line.

Example 3.2
Figure 3.1 shows diagnostic plots for the model fitted previously to the haddock biomass
data. The residual time series plot shows no obvious trends, although there is a suggestion
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of a cyclical pattern with alternating peaks and troughs roughly every 15 years. This
pattern is reflected in the plot of absolute values of the residuals, which possibly show
a decreasing trend in addition. If this is correct, it would suggest that the variance is
decreasing through time. However, on closer inspection the visual impression seems due
largely to the configuration of the few large values on the plot (if the first observation
was removed, the impression would not be as strong); perhaps, therefore, it should not
cause undue concern at this stage.
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Figure 3.1 Residual plots for model (3.4) fitted to haddock biomass data: (a) residuals
{et }, (b) absolute values {|et |}, (c) correlogram, (d) normal quantile–quantile plot. The
dashed line in panel (a) is at zero; that in panel (b) is at the mean of the absolute values.

The residual ACF does, however, reveal a problem: there is strong evidence that
the residuals are correlated. The oscillating pattern is consistent with the cycle suggested
previously, but now the peak at lag 12 allows the cycle length, if genuine, to be pinned
down more accurately to around 12 years. The reason for the caveat here is that it is
possible for stationary processes (see the end of Section 2.1.3) to exhibit apparent cyclical
behaviour; this is discussed further in Chapter 5. It is hardly necessary in this case to
carry out a formal test for the significance of the residual autocorrelation structure; for
illustrative purposes, however, we have computed the Durbin–Watson statistic (3.6). The
value of the test statistic is 0.793, which is significantly less than the value of 2 expected
under the null hypothesis of zero autocorrelation. The dwtest command in R gives the
p-value for this test as 5.90 × 10−16.

The final plot in Figure 3.1 is a normal quantile–quantile plot. It is probably premature
to devote too much attention to this at present, due to the problems revealed by the ACF.
Nonetheless, most of the residuals cluster more or less about a straight line, which suggests
that the normality assumption may not be too unreasonable. �
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Having discussed how to check the assumptions underlying the linear trend model, it
is natural to ask: What are the consequences if they are not satisfied? Failure of the first
assumption – that the errors have constant zero mean – means that any trend in the data
is not represented adequately by a linear function of time. Given the objectives of a trend
analysis, the consequence of this is clear: a better representation of the trend is needed!
It may appear that this is not so important if the aim of the analysis is purely descriptive,
since in this case the slope of a linear trend merely provides a convenient index of overall
change. However, if the underlying trend is not linear then successive observations will
tend to fall on the same side of the fitted line. The effects of this are essentially the same
as those that arise when the errors are autocorrelated.

In the presence of autocorrelation, least squares usually delivers reasonable parameter
estimates. Indeed, for some models (including the linear trend considered here, as well
as more general polynomial trends), least squares estimators remain optimal for a wide
range of autocorrelation structures, at least in large samples (Priestley, 1981, Section 7.7).
In general, however, least squares estimates of parameters in regression models are less
precise than if the autocorrelation is correctly accounted for (Greene, 2003, Chapter 10).
More seriously, the estimated standard errors of the parameters are incorrect, so that the
usual hypothesis tests and confidence intervals are invalid. We will see in Section 3.3 that
positive autocorrelation usually leads to underestimation of standard errors. This leads, in
turn, to inflation of t statistics for testing hypotheses such as H0 : β1 = 0 (and hence to
inflation of the corresponding F statistics for testing the explanatory power of a model).
As a result, such hypotheses tend to be rejected too often when they are true. Another way
to view this is that the null hypothesis must be interpreted within the context of the model
structure: under model (3.3), the data must be white noise if β1 = 0. In the presence of
autocorrelation, by definition the data are not white noise and it is quite correct to reject
the null hypothesis (see also the discussion in Section 2.4).

As far as standard errors and hypothesis tests are concerned, the effects of nonconstant
variance (or heteroscedasticity) are similar to those of autocorrelation but may be less
serious so long as the variance is not itself correlated with xt (Davidson and Mackinnon,
2004, Section 5.5; Greene, 2003, Section 11.2). Heteroscedasticity is more problematic,
however, if the fitted model is to be used for prediction. As in the haddock biomass
example previously, an approximate 95 % prediction interval for an observation at time t

can be computed, under the assumptions of normality and constant variance, as

Ŷt ± 2σ̂ , (3.7)

where σ̂ is the residual standard deviation. We will develop a more accurate version of
this interval later; for the moment, however, note that if heteroscedasticity is present, (3.7)
should read

Ŷt ± 2σ̂t ,

where now σ̂t estimates the standard deviation at time t . If the heteroscedasticity is
substantial, this interval could differ markedly from (3.7). If decisions are to be made
on the basis of such predictions, it can be important to give realistic assessments of
prediction uncertainty; the use of (3.7) in the presence of substantial heteroscedasticity
could therefore have serious implications.

The relevance of normality is also mainly confined to prediction. As noted previously,
least squares estimation is valid whether or not the errors are normally distributed, and test
procedures and confidence intervals are not particularly sensitive to moderate departures
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from normality providing the sample size is large enough. However, expression (3.7) is
completely unjustified unless the errors are normal.

This discussion of assumptions, and the consequences of their failure, has been nec-
essarily brief. Greene (2003) and Davidson and Mackinnon (2004) give more details. We
will shortly consider the options available when the assumptions break down; for the
moment, however, we continue to study the basic linear trend model (3.3).

3.1.2 Choosing the time index

So far, we have assumed that the time index t starts at 1. In this case, β1 can be inter-
preted as the average rate of change per unit time over the period of interest and β0 as the
‘underlying’ level of the series at time t = 0, i.e. immediately before the start of obser-
vation. However, this choice of time origin is essentially arbitrary: in the haddock stocks
example, we could equally have chosen to regress on the year instead of the observation
number, in which case the time index would have run from 1963 to 2000 instead of from
1 to 38. It should be clear that such a relabelling does not affect the estimated slope β̂1

or its standard error; nor does it affect the fitted values {Ŷt } or the residuals. However,
the intercept β̂0 will change to an estimate of the underlying level at the new time origin.
This can be useful when an aim of the analysis is to produce a prediction for a single
specified time point (and when it is sensible to use the linear trend model for such a
prediction): if this point is defined as the time origin then the predicted level, along with
its standard error, can be read directly from the output corresponding to the intercept.

Example 3.3
Suppose that one of the objectives of the haddock stocks analysis was to predict biomass
in the year 2005, assuming that the previous trend continued up to this point. This could
be achieved by changing the definition of xt in (3.4) to

xt = Year − 2005.

When log biomass is regressed on this new time index, the estimated coefficients (to three
significant figures) are β̂0 = 4.468 and β̂1 = −0.0370. The slope estimate is identical to
that in Table 3.2, but the intercept has changed: at the new time origin (i.e. in 2005), the
expected log biomass is 4.468 according to this model. The estimated standard error of
β̂0 is 0.170, which would give some idea of prediction uncertainty if the model assump-
tions were satisfied. Although we have seen that this is not the case here, the example
nonetheless illustrates that a judicious choice of origin can be helpful. �

We will see later that tricks such as this are not really necessary for prediction and
extrapolation. However, in general it can save some effort if a model can be written in
such a way that its parameters correspond directly to quantities of interest. In this context,
another useful time transformation in the linear trend model is given by the centred index

xt = t − t, (3.8)

where t is the sample mean of the original time indices. For regularly spaced time series,
t = (T + 1)/2. As before, the slope estimate β̂1 is unaffected by this transformation: the
estimated intercept, however, becomes the sample mean of the Y values. This is shown
in the next section.
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3.1.3 An overview of least squares

So far in this chapter, we have avoided technicalities. Later, however, it will be helpful
to have some insight into the underlying theory. Here we summarise a few key ideas.

In model (3.3), the least squares estimators are defined so as to minimise the quantity

S(β0, β1) =
T∑

t=1

(Yt − β0 − β1xt )
2

with respect to β0 and β1. This is done by differentiating with respect to β0 and β1 and
equating the derivatives to zero, to yield the normal equations :

∑T

t=1

(
Yt − β̂0 − β̂1xt

) = 0

and ∑T

t=1
xt

(
Yt − β̂0 − β̂1xt

) = 0. (3.9)

A comparison with (3.5) shows that the first of these equations can be written in terms
of the residuals as

∑T
t=1 et = 0: this shows that the residuals from a least squares fit of

(3.3) will always sum to zero.
In most elementary treatments, the normal equations are solved to yield explicit

formulae for the estimators. For example, the first equation can be rearranged to yield

β̂0 = Y − β̂1x,

where Y and x are the sample means of the Y and x values respectively; this can then be
substituted into the second equation to find β̂1. If x = 0, we have β̂0 = Y : this is why,
when the observations are regressed against the centred time index defined in (3.8), the
estimated intercept is just the sample mean of the observations.

At this point, to lay the foundations for subsequent material we will use matrices to
develop the theory further. Readers needing to refresh their knowledge of matrices and
their properties may care to consult one of the references given after Section 1.6.

The key to the matrix approach is to notice that (3.3) actually defines T separate
equations, one for each observation. We can stack these equations one on top of the other
and write them as

⎛
⎜⎝

Y1
...

YT

⎞
⎟⎠ =

⎛
⎜⎝

1 x1
...

...

1 xT

⎞
⎟⎠

(
β0

β1

)
+

⎛
⎜⎝

ε1
...

εT

⎞
⎟⎠

or, more compactly, as
Y = Xβ + ε, (3.10)

where Y and ε are T × 1 vectors, β is a 2 × 1 vector and X is a T × 2 matrix called the
design matrix of the regression. It will be convenient to write xt for row t of this matrix:

xt = (
1 xt

)
. (3.11)
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The fundamental assumption of the linear trend model is that the expected value of
the error vector ε is 0. Let � denote the covariance matrix of this error vector. Then,
from (3.10), we can write down the mean vector (μ, say) and covariance matrix of the
observation vector Y: denoting the covariance matrix by Var(Y), we have

μ = Xβ and Var (Y) = �. (3.12)

Note that if the errors form a white noise sequence, with variance σ 2, say, then we can
write � = σ 2I T , where I T is the T × T identity matrix with ones on the diagonal and
zeros everywhere else.

We now return to the normal equations (3.9), which can be rearranged as

∑T

t=1

(
β̂0 + β̂1xt

) =
∑T

t=1
Yt

and ∑T

t=1
xt

(
β̂0 + β̂1xt

) =
∑T

t=1
xtYt . (3.13)

It is tedious but straightforward to verify, using the rules of matrix multiplication (e.g.
Poole, 2006, Section 3.1 or Healy, 2002, Section 1.4), that these equations can be
rewritten as

X′Xβ̂ = X′Y. (3.14)

This provides an explicit expression for the least squares estimators:

β̂ = (
X′X

)−1
X′Y = AY, say. (3.15)

The properties of the estimators now follow immediately from the following standard
result (see, for example, Flury, 1997, Section 2.11 or Krzanowski, 1988, Section 7.1):

Result
Suppose Y is a T × 1 vector of random variables, with mean vector μ and covari-
ance matrix �. Let M be a p × T matrix, so that Z = MY is a p × 1 vector of
random variables. Then the expectation and covariance matrix of Z are Mμ and
M�M ′ respectively. �

Applying this result to (3.15) and noting that the transpose of A is A′ = X(X′X)−1,
the mean and covariance matrix of β̂ are

E
(
β̂
) = Aμ = (

X′X
)−1

X′Xβ = β (3.16)

and
Var

(
β̂
) = A�A′ = (

X′X
)−1

X′�X
(
X′X

)−1
. (3.17)

Equation (3.16) shows that the least squares estimators are unbiased. In the white noise
case when � = σ 2I T , X′�X reduces to σ 2X′X and (3.17) becomes

Var
(
β̂
) = σ 2 (

X′X
)−1

. (3.18)

The diagonal elements of this matrix give the variances of the individual components of
β̂; taking square roots yields the corresponding standard errors.
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Example 3.4
Consider the linear trend model (3.3) with xt = t − t as in (3.8). If the observations are
regularly spaced so that t = (T + 1)/2, some elementary algebra shows that

X′X = T

(
1 0
0

(
T 2 − 1

)
/12

)
.

The inverse of this matrix is

(
X′X

)−1 = 1

T

(
1 0
0 12/

(
T 2 − 1

) )
.

Therefore, in the white noise case the variances of β̂0 and β̂1 are

σ 2

T
and

12σ 2

T
(
T 2 − 1

)
respectively, and the correlation between them is zero. This lack of correlation is a result
of the matrix X′X being diagonal, and is convenient for interpretation since it enables us
unambiguously to separate out the estimation of the overall mean level β0 from the trend
β1. If the parameter estimates were correlated, this would not be possible. We revisit this
issue in Section 3.2.

Notice also that for all but the smallest values of T , 12/(T 2 − 1) is much less than 1
so that β1 is estimated much more precisely than β0. This can be traced back to the large
bottom right-hand element of X′X, reflecting the wide separation of the observations
along the time axis. It seems intuitively reasonable that in these circumstances the slope
can be estimated more precisely than the overall mean level (imagine plotting the true
trend line by hand on graph paper, by marking two points and connecting them with a
ruler – if the points are widely separated, any small errors will have a negligible effect
on the slope of the plotted line). Moreover, as discussed earlier, the estimate β̂1 and its
standard error are unaffected by shifting the labels on the time axis: this explains why, in
Table 3.2, the standard error of β̂1 was so much smaller than that of β̂0. �

We conclude this section by examining the properties of the residuals {et }. Notice
first that, given the least squares estimates (3.15), the fitted values can be assembled into
a vector

Ŷ = Xβ̂ = X
(
X′X

)−1
X′Y = HY , say. (3.19)

The symmetric T × T matrix H = X(X′X)−1X′ is usually called the hat matrix , because
its effect is to put a ‘hat’ on the vector Y. It is also sometimes called the influence
matrix , for reasons that will become clear in Section 3.1.5. Perhaps unexpectedly, H is
unchanged when multiplied by itself: HH = H . This is easily verified. Such a matrix is
called idempotent .

Having defined the vector of fitted values, we can define the vector of residuals in a
similar way:

e = Y − Ŷ = Y − HY = (I T − H ) Y (3.20)

where, as before, I T denotes the T × T identity matrix. One application of this is to
derive an estimator of the error variance σ 2. It is natural to base such an estimator on the
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residual sum of squares : RSS = ∑T
t=1 e2

t , which can be written in matrix notation as e′e.
The representation (3.20) can be used to show (Greene, 2003, Section 4.6; Davidson and
Mackinnon, 2004, Section 3.6) that the expected value of e′e is (T − k)σ 2, where k is
(usually) the number of regression parameters in the model, i.e. the length of the vector
β. The usual variance estimator

σ̂ 2 = 1

T − k

T∑
t=1

e2
t (3.21)

is therefore unbiased for σ 2.
Representation (3.20) also allows us to write down the mean vector and covariance

matrix of the residuals using the Result given earlier in this section:

E (e) = (I T − H ) μ =
[
I T − X

(
X′X

)−1
X′

]
Xβ = 0 (3.22)

and
Var (e) = (I T − H ) � (I T − H )′ . (3.23)

We are now in a position to examine in detail the behaviour of the residuals from the
linear trend model in the white noise case. Here, (3.23) reduces to

Var (e) = σ 2 (I T − H ) (I T − H )′ = σ 2 (
I T − H − H ′ + HH ′) = σ 2 (I T − H ) ,

(3.24)

the last step following because H is symmetric (i.e. H ′ = H ) and idempotent. Recall now
that the residuals are the same regardless of the choice of time origin. For convenience,
therefore, we will take the time origin to be t . In this case, the matrix X′X was derived
in Example 3.4. From this, it can be shown that the (t, s)th element of the hat matrix is

hts = 1

T

[
1 + 12

(
t − t

) (
s − t

)
T 2 − 1

]
.

From (3.24), the variance of et is simply σ 2 (1 − htt ) and the covariance between et and
es is −σ 2hts for t �= s. We therefore have

Var (et ) = σ 2

{
1 − 1

T

[
1 + 12

(
t − t

)2

T 2 − 1

]}
(3.25)

and

Cov (et , es) = −σ 2

T

[
1 + 12

(
t − t

) (
s − t

)
T 2 − 1

]
(s �= t). (3.26)

Notice from (3.25) that the variances of the residuals are not constant. In fact, they range
from a minimum value of

σ 2
[

1 − 4T − 2

T (T + 1)

]

at t = 1 and t = T to a maximum of σ 2(1 − T −1) at t = t . If T is large enough,
the second term in both expressions is effectively negligible so that the variances can
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be regarded as constant for all practical purposes – for example, when T = 100 the
range is from 0.96σ 2 to 0.99σ 2. For small T , however, the differences are larger. One
way to deal with this when checking models is to work with standardised residuals ,
defined as

rt = et

σ̂
√

1 − htt

. (3.27)

In the white noise case, the standardised residuals all have the same variance, which is
approximately 1. For the haddock biomass example, diagnostic plots of the standardised
residuals (not shown here) look almost identical to those shown later in Figure 3.4. This
indicates that for informal model checking purposes, standardisation is not really necessary
for this particular example.

Given that the residuals always sum to zero, it is perhaps to be expected that they are
negatively correlated, as indicated by the sign of the covariance at (3.26). The covariances
range from −σ 2/T , when either s = t or t = t , to

−σ 2
[

4T − 8

T (T + 1)

]

for the first and last pair of time points. The corresponding correlations are smallest for
pairs of residuals with low covariance and high variance. These pairs occur close to t ,
where the variances are roughly σ 2(1 − T −1) and the covariance is −σ 2/T so that the
correlation is approximately −1/(T − 1). At the other extreme, for pairs at the ends of
the series with low variance and high covariance, a similar argument shows that the
correlation is approximately −4/(T − 1). Therefore, for the haddock biomass example,
even if the error process was white noise some of the inter-residual correlations could be
as large as −4/37 = −0.11. Unfortunately this correlation cannot be eliminated via any
simple device such as the use of standardised residuals.

The conclusion from this exercise is that for small sample sizes, the properties of
the residuals may differ noticeably from those of the underlying errors. Care should
therefore be taken with the interpretation of residual plots: in particular, devices such as
the addition of the usual 95 % limits to a residual correlogram should be treated as at
best informal aids to interpretation. This is directly analagous to the problems noted in
Chapter 2, where the process of detrending via filtering was seen to change the properties
of a series. When using parametric models, however, many of the problems recede given
enough data.

3.1.4 Extrapolation

In Section 1.2, we saw that one of the reasons for carrying out a trend analysis may be
to extrapolate past patterns into the future. Such extrapolation is particularly simple if the
trend can be represented plausibly over the period of interest using a parametric model.
For example, if a 50-year sequence of observations exhibits a clear linear trend then, in
the absence of information to the contrary, it may be reasonable to suppose that this will
continue at least in the short term. Indefinite extrapolation would, of course, be unwise:
trends are likely to change over time, reflecting changes in the environment controlling the
process of interest, as well as the fact that the unlimited increases or decreases suggested
by a linear trend are often not physically realisable. Methods for allowing trends to change
over time are discussed in Chapter 5. In the meantime, however, we will proceed on the
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assumption that a linear trend model has been fitted to data y1, . . . , yT and is judged to
be a suitable basis for extrapolation up to time T + �.

The actual value at time t + � will be the realised value of a random variable Yt+�.
Under model (3.3), we have Yt+� = β0 + β1xt+� + εt+�, where xt+� = t + �. It is natural
to use the estimates of β0 and β1 for extrapolation: Ŷt+� = β̂0 + β̂1xt+�, say. Of course,
the actual value of Yt+� will not be equal to Ŷt+�, even if it is generated according to
model (3.3). This is firstly because the value of εt+� cannot be predicted in advance and
secondly because the extrapolation uses the parameter estimates β̂0 and β̂1 rather than the
true underlying values. It is therefore useful to be able to say something about the likely
magnitude of any error associated with the prediction.

The prediction error is Yt+� − Ŷt+� = (β0 + β1xt+� + εt+�) − (β̂0 + β̂1xt+�). This can
be rewritten as (β0 − β̂0) + (β1 − β̂1)xt+� + εt+� or, in matrix notation,

(
1 xt+�

) (
β0 − β̂0

β1 − β̂1

)
+ εt+� = xt+�

(
β − β̂

) + εt+�.

From equations (3.16) and (3.18), we find that the vector β − β̂ has mean 0 and covariance
matrix σ 2(X′X)−1. Next, the Result in Section 3.1.3 tells us that the quantity xt+�(β − β̂)

has expectation zero and variance σ 2xt+�(X
′X)−1x′

t+�. Now, since εt+� has expectation
zero and variance σ 2, and is independent of β̂, we find that the expected prediction error
is zero and that its variance is

σ 2
[
1 + xt+�

(
X′X

)−1 x′
t+�

]
. (3.28)

This expression is a sum of two terms, which may be thought of as the respective con-
tributions from ‘random’ and ‘estimation’ error. The former is due to εt+� and the latter
to β − β̂.

If the variance σ 2 is known and the {εt } are normally distributed, (3.28) enables us
to construct a prediction interval for Yt+�. For example, a 95 % interval is given by

Ŷt+� ± 1.96σ

√
1 + xt+�

(
X′X

)−1 x′
t+�.

As usual, in the more realistic situation when the variance is unknown and has been
estimated, the multiplier 1.96 here should be replaced by the upper 2.5 % point of the
appropriate t distribution.

If the model is correct and prediction intervals are calculated for several future
time points, we expect 95 % of them to contain the actual values when these become
available. The matrix based derivation above makes it particularly simple to calculate
several intervals simultaneously: simply replace the vector xt+� in (3.28) with a matrix, the
rows of which correspond to the time points of interest. The result will be the covariance
matrix of all the prediction errors; the diagonal elements of this matrix give the variances
needed to form prediction intervals. This procedure is much simpler (operationally, at
least) than the device suggested in Section 3.1.2, of choosing the time origin to coincide
with a particular time point of interest. Note also that the emphasis here is on predicting
future observations, whereas previously we considered only estimation of the underlying
trend at the origin (i.e. the parameter β0). Uncertainty in prediction is greater than that
in estimation, because of the error terms {εt }. The variance of the estimation error can
be obtained by dropping the first term in (3.28). The result can be used to calculate
confidence intervals for the underlying trend at time points of interest.
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Example 3.5
Consider using the linear trend model in Table 3.2 to predict log haddock biomass for
each of the years 2001–2005. The predict function in R implements the theory out-
lined above. The results are summarised in Table 3.3. The predictions {ŶYear} decrease
linearly as expected. The row entitled ‘standard error of fit’ gives the standard devia-
tion corresponding to the estimation (rather than prediction) error, i.e. the square root of
σ̂ 2xt+�

(
X′X

)−1 x′
t+�. In general, for a regression model of the form (3.3), these stan-

dard deviations increase with the distance |xt − x|; here, therefore, the standard errors
increase as the predictions move further into the future. Notice also that the standard
error for the fit in 2005 is 0.170; this is the same as the value obtained in Example 4.3
by reparameterising the model.

Table 3.3 Predictions of North Sea haddock biomass for 2001–2005, according to the
linear trend model summarised in Table 3.2.

Year 2001 2002 2003 2004 2005

Fitted trend, ŶYear 4.616 4.579 4.542 4.505 4.468
Standard error of fit 0.146 0.152 0.158 0.164 0.170

95 % limits (4.319, (4.270, (4.221, (4.173, (4.124,
for trend line 4.913) 4.887) 4.862) 4.837) 4.812)

95 % limits (3.671, (3.630, (3.589, (3.548, (3.507,
for log biomass 5.561) 5.527) 5.494) 5.461) 5.429)

95 % limits (39.3, (37.7, (36.2, (34.7, (33.3,
for biomass 260.0) 251.5) 243.3) 235.4) 227.8)

Table 3.3 also shows the difference between confidence intervals for the trend line
and prediction limits for log biomass; the former are much narrower, because they do not
account for the error term in the model. Finally, notice that the prediction limits for log
biomass can easily be converted back to limits for the actual biomass (in thousands of
tonnes); these limits are shown in the last two rows of the table. �

Of course, any exercise in extrapolation is only warranted insofar as the underlying
model holds. For the haddock stocks data we have already seen that this is not the case,
whence the predictions in Table 3.3 should not be taken particularly seriously (although
the qualitative features of the example are quite general). However, even if the fitted
model appears to pass all conceivable diagnostic tests, any extrapolation into the future is
ultimately predicated on the strong, but unavoidable, assumption that the model structure
will continue to hold over the time period of interest. This assumption will rarely hold
exactly, although it may be a fair approximation in the short term, particularly if the
guidelines in Section 1.4 are followed during the model-building process. In general, a
prudent interpretation of any extrapolation should recognise that uncertainty about the
future is often greater than the prediction intervals from a single model would suggest,
simply because such intervals take no account of the possibility that the model is wrong.

3.1.5 Influential observations

Consider the following hypothetical scenario: a three year research project aims to mon-
itor radioactivity levels in marine sediments, offshore of a nuclear waste reprocessing
plant. The plan is to make quarterly trips in a research vessel, to gather sediment samples
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for subsequent analysis. Unfortunately, at the end of the first year the research vessel is
damaged and the repairs take 21 months, so that it is only possible to make one further
trip before the end of the project. The measured caesium-137 (137Cs) concentrations in
the samples taken during quarters 1, 2, 3, 4 and 12 are 13, 12, 15, 13 and 18 Bq kg−1

respectively. If a linear trend is fitted to these data, the estimated slope is 0.49 Bq kg−1

per quarter and is significant at the 5 % level (the associated p-value is 0.04). The resid-
uals show no obvious problems (which is hardly surprising given so few observations).
However, a time series plot shows clearly that the appearance of a trend is almost entirely
dominated by the final observation. If this observation is removed and the model is refit-
ted, the trend estimate changes to 0.3 Bq kg−1 per quarter and is no longer significant
(the p-value becomes 0.69).

Clearly, it is undesirable that the individual observations should have such a strong
influence on the results of any analysis. In general, therefore, it is worth checking that such
problems are not present. A widely used influence measure is derived by considering, for
each observation in turn, what would be the effect of its deletion upon the fitted values for
the remaining observations. Let ŷs denote the fitted value at time s and let ŷ

(−t)
s denote

the fitted value obtained if the model is refitted after discarding the observation at time t

(we use lower case letters here, to indicate that we are considering the particular values
that are observed). Then the overall change in the fit when observation t is omitted can
be summarised (Cook and Weisberg, 1999, Section 15.2) as

Dt = 1

kσ̂ 2

T∑
s=1

(
ŷ(−t)

s − ŷs

)2
, (3.29)

where, as previously, k is the number of regression parameters in the model and σ̂ 2 is
the estimated error variance defined at (3.21).

The quantity Dt is called Cook’s distance. At first glance, it appears infeasible to
calculate this routinely for every observation in a data set, because of the need to refit
the model to obtain ŷ

(−t)
s . However, it can be shown that such refitting is not necessary:

an alternative formula for Ds is

Dt = r2
t

k

htt

1 − htt

, (3.30)

where rt is the standardised residual defined at (3.27) and htt is the t th diagonal element
of the hat matrix as before. This shows that an observation may have a large influence
either if it has a large residual (rt ) or if the quantity htt /(1 − htt ) is large. From the
definition of the hat matrix at (3.19), the latter quantity depends (in the context of the
linear trend model) only on the observation times, and not on the observations themselves.
The quantities {htt} are called leverages , and can be regarded as measuring the effect
of each observation on the estimated regression coefficients (as opposed to the Cook’s
distances, which measure the effect on the fitted values). It is necessary to examine both
leverages and Cook’s distances, along with residuals, to obtain a full understanding of
a fitted model. For example, it is possible for an observation with a Cook’s distance of
zero to have a substantial effect on the estimated regression coefficients (Davison, 2003,
Section 8.6).

Leverages and Cook’s distances are usually interpreted informally. It is common,
for example, to regard any leverage greater than 2k/T and any Cook’s distance greater
than 8/(T − 2k) as giving potential cause for concern (in the case of irregularly spaced
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data, T here denotes the total number of observations). In such cases, unless T is very
large it may be worth refitting the model without the corresponding observations to see
if there are any substantive changes in the conclusions. Of course, if T is large then
it is almost inevitable that some observations will have leverages or Cook’s distances
exceeding 2k/T and 8/(T − 2k) respectively; however, in absolute terms the effect of
any individual observation on the fit is usually negligible.

Example 3.6
Figure 3.2(a) shows Cook’s distance for each observation in the hypothetical 137Cs data
set, along with the threshold 8/(T − 2k). The final observation has the largest Cook’s
distance, but according to this plot it does not have much overall influence on the fitted
values. In contrast, Figure 3.2(b) shows that it does have a high leverage, which is why the
regression coefficient changes so much when the observation is deleted. This illustrates
the need to consider Cook’s distances and leverages separately.
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Figure 3.2 Cook’s distances and leverages for linear trend models fitted to the hypothet-
ical 137 Cs data (a, b) and to the log haddock biomass series (c,d).

Figures 3.2(c) and 3.2(d) show the same diagnostics for the haddock biomass model
of Table 3.2. Here, the regular spacing of the observations ensures that there are no
excessively high leverage points; however, the observation for 1963 seems to be influential
according to the Cook’s distance plot. This is because it has a large residual (as already
noted when discussing Figure 3.1) coupled with a moderately high leverage. Since the
series is relatively short, it may be worth investigating the effect of refitting the model
without this first observation. If this is done, the slope of the trend changes from −0.037 to
−0.042 and the residual variance decreases from 0.1957 to 0.1642. However, the residual
plots for the refitted model look almost identical to those in Figure 3.1. Clearly, the
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overall conclusion of a decreasing linear trend with substantial residual autocorrelation is
unaffected by removing the first observation, but the combination of a change in slope
and a reduction in error variance could have a noticeable impact upon, for example,
prediction intervals for future observations. In this particular example, at this stage the
main problem with prediction intervals is that the assumption of uncorrelated errors is
clearly inadequate, and therefore it is probably premature to worry about the effect of the
1963 observation; however, the exercise reinforces the comments made previously about
the need for caution when making predictions. �

As an alternative to removing the influential observations, we could consider the use
of robust fitting methods , which aim to use all of the data but to limit the effect of
individual observations on the results. In general, the price to pay for robustness is some
loss in precision (and hence in the ability to detect weak trends when they exist) when
the least squares assumptions are satisfied.

For parametric models, least absolute deviations (LAD) regression is a popular robust
method: here, the regression coefficients are estimated by minimising the quantity

T∑
t=1

|yt − β0 − β1xt | .

By comparison with least squares, the use of absolute rather than squared differences
reduces the weight attached to large deviations from the trend line. In fact, the underlying
statistical model differs slightly from (3.2), since it may be shown that the LAD regression
line is an estimate of trend in the median of the observations, rather than in the mean.
This is discussed in more detail in Section 4.3.5.

Santer et al . (2000) carried out a comparison between least squares and LAD regres-
sions for the linear trend model applied to atmospheric temperature series and found that
the two methods sometimes yielded rather different results. In such situations, it is impor-
tant to understand the implications of the different estimation methods: if the influential
observations are considered to be an intrinsic part of the system under study, then one
might reasonably consider the least squares estimates to be more relevant, and vice versa.

For further details of robust regression methods and their implementation in R, see
Faraway (2005, Section 6.4).

3.1.6 Other methods of model fitting

The principle behind least squares estimation is intuitive and easily understood: to choose
values of the model parameters that yield the best predictions (in some sense) of the
available data. However, least squares is not the only method available for fitting statistical
models. In this section we briefly introduce two alternative methods, both of which are
widely applicable. These are the maximum likelihood and Bayesian methods respectively.

In maximum likelihood estimation, the parameter estimates are the values for which
the probability (or, in many cases, the density) of the observations is maximised. The
intuition is that these values are, in some sense, more consistent than any others with
the observations. In many situations the method has desirable optimality properties, at
least in large samples (Garthwaite, Jolliffe and Jones, 2002, Chapter 3; Azzalini, 1996,
Section 3.3; Krzanowski, 1998, page 40): it is therefore the method of choice in much
modern statistical work.
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To illustrate the basic ideas, consider the linear trend model (3.3). Under this model,
the observation yt is considered to be drawn from a normal distribution with mean
μt = β0 + β1xt (where xt = t) and variance σ 2. Thus, the density of this observation
is given by the probability density function of the corresponding normal distribution:

ft

(
yt ;β, σ 2) = 1

σ
√

2π
exp

[
− (yt − μt )

2

2σ 2

]
,

where β = (β0 β1)
′ is the vector of regression coefficients as before. Furthermore, since

the observations are all considered to be independent, their joint density is the product of
their individual marginal densities:

f
(
y;β, σ 2) =

T∏
t=1

ft

(
yt ;β, σ 2) = (

2πσ 2)−T/2
exp

[
− 1

2σ 2

T∑
t=1

(yt − μt )
2

]
. (3.31)

Treating this joint density as a function of β and σ 2 yields the likelihood function for
the parameters. The maximum likelihood estimates (MLEs) are the parameter values that
maximise this expression. Alternatively, because the values that maximise (3.31) also
maximise its logarithm, we can work with the log-likelihood function

�
(
β, σ 2; y

) = log f
(
y;β, σ 2) =

T∑
t=1

log ft

(
yt ;β, σ 2)

= −T

2
log 2πσ 2 − 1

2σ 2

T∑
t=1

(yt − μt )
2 , (3.32)

which is easier to maximise than the likelihood function itself. Noting that the coefficient
vector β enters only through the means {μt }, maximisation with respect to β is equivalent
to minimising

∑T
t=1(yt − μt )

2: thus the MLEs of the regression coefficients are the same
as the least squares estimates.

For the variance σ 2, we can maximise the log-likelihood by differentiating and equat-
ing to zero. We have

∂�

∂σ 2
= − T

2σ 2
+ 1

2σ 4

T∑
t=1

(yt − μt )
2 ,

which is equal to zero when σ 2 = T −1 ∑T
t=1 (yt − μt )

2. It can be verified that this does
indeed correspond to a maximum of (3.32). Notice that this estimate of σ 2 is not the same
as the usual unbiased least squares estimate (3.21), where the divisor T − k was used in
place of T (k = 2 being the number of elements of β). Clearly, if T is very large then
there will be very little difference between the two estimates, but in small samples the
MLE of the error variance may be biased. Further discussion of this and related issues is
given in Section 3.5.

Since the data y are considered as generated from a probability model for the asso-
ciated random variables Y, the log-likelihood function and associated quantities can
themselves be regarded as the realised values of random variables: for example, (3.32) is
the realised value of −

[
T log 2πσ 2 − σ−2 ∑T

t=1 (Yt − μt)
2
]
/2. Thus it is meaningful to
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talk about the expected value of such quantities. A key role in the theory of maximum
likelihood is played by the expected information matrix , defined as J = −�, where �

is the matrix of expected second derivatives of the log-likelihood with respect to the
parameters. It can be shown (Davison, 2003, page 118) that, in large samples, for many
models the distribution of maximum likelihood estimates is approximately multivariate
normal with the covariance matrix equal to J−1. This can be used, for example, to cal-
culate approximate (and, in some cases, exact) standard errors and confidence intervals
for individual parameters. For linear regression models, including the linear trend model,
the likelihood based standard errors for the regression coefficients are the same as those
obtained by least squares.

Maximum likelihood estimation aims to use the data to learn about the values of model
parameters (β0, β1 and σ 2 in the case of the linear trend model) that are considered as fixed
but unknown. Bayesian estimation takes a very different perspective: specifically, that the
role of the data is to update the analyst’s existing knowledge of the parameters. Before
observing y the analyst may have some idea, based on past experience with similar data
or from some understanding of the system being studied, of roughly what the parameter
values should be. A Bayesian approach requires that this knowledge is represented via
a joint probability distribution for the parameters, called the prior distribution: if the
parameters are collected into a single vector θ , say, then the density of the prior distribution
is usually written as π (θ). In this context, the ‘classical’ interpretation of probabilities
(as long-run frequencies in a notional sequence of repetitions of some experiment) is
unhelpful: rather, probability statements about θ are seen as a convenient device for
representing the analyst’s uncertainty. Note also that the assignment of a probability
distribution to the parameters represents a significant conceptual shift from the idea that
they are fixed quantities.

In a Bayesian setting, knowledge of θ after observing y is expressed by the conditional
probability distribution of θ given that Y = y. This conditional distribution is called the
posterior distribution for θ , and is denoted by π (θ |y). Bayes’ theorem (for example
Davison, 2003, Section 11.1) gives

π (θ |y) = f (y|θ)π(θ)

f (y)
.

Here, f (y|θ) is the density of y given θ . Regarded as a function of θ rather than y, this
is just the likelihood for θ as defined above: f (y|θ) = L(θ |y), say. Moreover, f (y) is
the unconditional density of y, which does not vary with θ . We therefore have π (θ |y) ∝
L(θ |y)π(θ) or, in words,

Posterior ∝ Likelihood × Prior. (3.33)

This relation is at the centre of all Bayesian inference. The constant of proportionality
is defined by the requirement that

∫
π (θ |y) dθ = 1, which must hold since π (θ |y) is a

probability distribution. In the Bayesian framework, the posterior distribution completely
summarises the available information about θ . The Bayes estimator of θ is defined as the
mean of this posterior distribution: E(θ |y) = ∫

θπ (θ |y) dθ , and percentiles of the marginal
posterior distributions for each component of θ can be used to construct Bayesian credible
intervals , which are the Bayesian analogue of confidence intervals.

For some simple models it is possible to calculate the posterior distribution explic-
itly for specific choices of prior; see, for example, Davison (2003, Section 11.1) or
Gelman et al . (1995, Chapters 3 and 8). However, there is a limited range of models and
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prior distributions for which such calculations are possible. Thus, Bayesian estimation
and inference is often carried out using Markov chain Monte Carlo (MCMC) computer
algorithms that are designed to provide a simulated sample from the posterior distribution,
from which any quantities of interest can be estimated (see Gelman et al ., 1995, Part III
for an overview). MCMC methods are also extremely useful for the fitting of complex
models in situations where direct calculation of the likelihood is infeasible. In R, libraries
R2WinBUGS (Sturtz, Ligges and Gelman, 2005) and BRugs (Thomas et al ., 2006) provide
interfaces to packages such as WinBUGS (Lunn et al ., 2000) and OpenBUGS (Thomas
et al ., 2006), which can be used to carry out MCMC computations for a wide range of
Bayesian analyses. BayesX (Belitz et al ., 2009) is another freely available package for
Bayesian computation; this is used in Chapter 10 of the present volume.

In many environmental situations, a Bayesian approach provides an appealing means
of incorporating genuine subject-matter knowledge into an analysis via the prior distribu-
tion. For example, Leith and Chandler (2010) carry out a Bayesian analysis of simulated
climate data for the end of the twenty-first century, in which physical limits on the climate
system are incorporated by using the ranges of historical climate observations to set prior
distributions for regression coefficients representing future means and linear trends. If, on
the other hand, little subject-matter knowledge is available then this can be represented
by using prior distributions with very large variances, although such ‘noninformative’ or
‘diffuse’ priors can have unexpected implications in some circumstances (Davison, 2003,
Section 11.1.3).

The need to specify a prior distribution is sometimes seen as a disadvantage of
Bayesian methods because it introduces an element of subjectivity: two analysts, fit-
ting the same model to the same data but with different priors, could reach different
conclusions. However, it can be shown that in large samples irrespective (within reason)
of the choice of prior, the results from Bayesian and likelihood based analyses are almost
the same: for example, the Bayes estimator and credible intervals are very similar to the
MLE and corresponding confidence intervals (Davison, 2003, Section 11.2). Therefore,
given enough data, our two analysts should be able to resolve their differences. If they
cannot do this and their priors are both justifiable on subject-matter grounds, the implica-
tion is that the available data do not contain enough information to discriminate between
alternative plausible scenarios.

3.2 Multiple regression techniques

An obvious extension to the linear trend model (3.2) is to supplement, or replace, the
time index t with the values of other quantities that may be responsible for changes in
the variable of interest. Such quantities are referred to as covariates , and the variable of
interest is often called the response variable. The simplest way to model the effect of
several covariates is via a multiple regression model of the form

Yt = β0 +
p∑

i=1

βixit + εt = μt + εt , say (t = 1, . . . , T ). (3.34)

Here, xit denotes the value of the ith covariate at time t .
The multiple regression model can once again be written in the matrix form (3.10),

the only differences being that β = (
β0 β1 · · · βp

)′
now has length k = p + 1 and

that X has dimensions T × k. As before, the intercept β0 is accommodated by filling the
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first column of X with ones. A consequence of the matrix representation is that all of the
results from the previous section are applicable here as well. Techniques for identifying
influential observations can be used without modification; the diagnostics described in
Section 3.1.1 can also be used to check the model. Additionally, it can be useful to plot
the residuals against each of the covariates individually to check for unmodelled structure.
Some effort can be saved by plotting the residuals against the fitted values, rather than
against each covariate individually. The plot.lm function in R produces a variety of
diagnostics for multiple regression models; straightforward summaries of the main ideas
can be found in Davison (2003, Section 8.6) and Faraway (2005, Chapter 4). For more
extensive discussion and details of more sophisticated diagnostics, see Cook and Weisberg
(1999, Chapter 14) and Fox (2002, Chapter 6).

When the underlying assumptions are satisfied, multiple regression provides the abil-
ity to represent all of the processes affecting the quantity of interest within a single
model. This contrasts with the common approach of standardising time series data prior
to analysis so as to remove structure that is not of direct interest. A disadvantage of the
latter approach is that any form of adjustment, such as the removal of seasonality, is a form
of preprocessing and therefore needs to be accounted for subsequently. By way of illus-
tration, consider a hypothetical example involving the association between air pollution
and human mortality. Mortality time series typically show seasonal fluctuations, some but
not all of which may be attributable to seasonal variation in pollution (Schwartz, 1994).
If seasonality is removed from a mortality time series prior to analysis, for example by
subtracting monthly means, it is likely that some of the pollution effect will be removed
inadvertently at the same time. Moreover, if the resulting anomalies are regressed on raw
or deseasonalised pollution levels, the standard errors of regression coefficients will tend
to be underestimated because the analysis does not allow for the possibility that pollution
is responsible for some of the discarded seasonal structure. The problem can be avoided
entirely by fitting a multiple regression model to the raw data, containing covariates that
represent seasonality explicitly as described below.

In principle, multiple regression models can also be used for extrapolation, using the
methodology described in Section 3.1.4. However, in practice this is only possible if future
values of the covariates are available. One way to achieve this is by using lagged values of
the covariates in the model, if such lagged values have any explanatory power at the time
horizon of interest. An alternative is to base extrapolations on ‘scenarios’, whereby the
effect of a prespecified sequence of covariates is investigated. Scenario based extrapolation
is useful in situations where the future values of the covariates are, at least nominally,
under the control of policymakers – examples of such covariates might include levels of
industrial sulfur emissions and fisheries quotas.

3.2.1 Representing seasonality in regression models

Seasonality is often one of the most important factors controlling environmental processes
at sub-annual timescales. In some cases, it arises mainly due to dependence on one or
more seasonally varying covariates, and can be accounted for by including these covariates
in a multiple regression model. However, if there are no plausible covariates to which
seasonality can be attributed, or if data on such covariates are not available, a different
approach is required.

A crude way to handle seasonality is to fit separate models for different times of year.
However, the multiple regression framework offers the possibility of representing seasonal
controls explicitly via the use of ‘dummy’ covariates. The simplest option is perhaps
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to define binary indicator variables for each time period. For example, for quarterly
data one could define variables x1t , x2t , x3t and x4t , such that xjt takes the value 1 for
observations in quarter j and zero otherwise. A multiple regression model involving just
these covariates takes the form

Yt = β0 +
4∑

j=1

βjxjt + εt . (3.35)

In this model, the fitted value for quarter j will be β0 + βj , since xjt = 1 during this
quarter and the other covariates are all zero. A least squares fit will, in principle, equate
β0 + βj with the mean of the observations for quarter j (j = 1, . . . , 4). However, this
reveals a problem: since there are only four quarterly means, it is not possible to estimate
the five coefficients β0 to β4. The model is said to be overparameterised . The difficulty
is usually resolved by imposing a constraint on the coefficients, for example by setting
one of them to zero. The precise choice of constraint does not affect the fitted values
from the model, but it does affect the interpretation of the coefficients. Consider, for
example, setting β0 = 0 in (3.35). In this case, the fitted value for quarter j is just βj ,
which can therefore be interpreted as the mean level for that quarter. If instead we set
β1 = 0, then the fitted value for quarter 1 is β0 and the fitted value for any other quarter
j is β0 + βj . In this case therefore, β0 is the mean for quarter 1 and, for quarter j > 1,
βj is the difference between the means for quarters 1 and j .

The use of indicator variables can also be regarded as a means of adjusting for
seasonality. The residuals from model (3.35) are precisely the anomalies that would be
obtained by subtracting the quarterly means prior to analysis. If the purpose of the analysis
is to assess the effect of some other covariate on the response, this can be quantified by
fitting an extended model incorporating the extra covariate in addition to the seasonal
indicators. The fitted values from such a model will be the same as those from a separate
analysis of the anomalies, but the regression coefficient corresponding to the covariate of
interest, and its standard error, may be rather different since they take into account all of
the available information.

In the discussion above, the dummy covariates x1t to x4t effectively code for a sin-
gle variable ‘quarter’, which defines four separate groups or categories. Such grouping
variables are called factors ; the separate groups are referred to as levels . Regression soft-
ware will usually handle factors automatically, providing they are defined as such (correct
behaviour can be guaranteed in R by using characters, rather than numbers, to represent
the different groups). The issue of overparameterisation is, however, always present and,
to interpret software output, it is necessary to know what constraints have been imposed.
In R, the default behaviour for unordered factors is to use ‘corner-point’ constraints, in
which the coefficient associated with the first level (β1 in the discussion above) is set
to zero. Another option is to constrain all of the coefficients associated with a factor to
sum to zero. In model (3.35), if there were equal numbers of observations in each quarter
then, under a sum-to-zero constraint, the estimate of β0 would be the overall mean of the
series and βj would be the average deviation from this overall mean in quarter j . The
interpretation is less straightforward with differing numbers of observations per quarter.
For further details of factor coding in general, see Dobson (2001, Section 2.4). Fox (2002,
Chapter 4) and Venables and Ripley (1999, Section 6.2) give a comprehensive account
of the facilities available in R.

The factor based approach to modelling seasonality is similar in spirit to the practice
of fitting separate models to different subgroups of observations. In both cases the need to
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make an essentially arbitrary choice of groups, coupled with sampling variability within
each group, means that the estimated seasonal structure can be rather a rough approxi-
mation to reality, particularly when (as is often the case) the underlying seasonal cycle
is expected to be fairly smooth. As an alternative, therefore, one might consider defining
dummy seasonal covariates that explicitly represent seasonality in a smooth manner. An
obvious candidate is a cosine function:

cos

(
2π

t − τ

S

)
, (3.36)

where S is the number of time units in a complete seasonal cycle (e.g. 12 if t is measured
in months) and τ defines a time point at which the seasonal cycle achieves its maximum
value; this is sometimes referred to as the phase of the cycle. Notice that τ is not
uniquely defined since, by definition, the seasonal cycle has at least one maximum every
year. However, the resulting cosine function will be the same regardless of the year
in which τ falls. Of more concern, perhaps, is that in general the exact value of τ is
unknown. At first glance this appears problematic, since τ is not a regression coefficient
and hence cannot be estimated using the methods discussed so far. Usually in such
situations, nonlinear regression techniques are required (see Section 3.4). Notice, however,
that (3.36) can be rewritten using the standard trigonometric identity cos(ω1 − ω2) =
cos(ω1) cos(ω2) + sin(ω1) sin(ω2):

cos

(
2πt

S
− 2πτ

S

)
= cos

(
2πt

S

)
cos

(
2πτ

S

)
+ sin

(
2πt

S

)
sin

(
2πτ

S

)

= A cos

(
2πt

S

)
+ B sin

(
2πt

S

)
, say,

where A and B are constants depending on the unknown value of τ . If, therefore, we
fit a multiple regression model including two covariates cos(2πt/S) and sin(2πt/S), the
unknown constants A and B will simply be subsumed into the regression coefficients.

Of course, in many cases the seasonal cycle is not exactly of the form (3.36). How-
ever, a consequence of the Fourier representation discussed in Section 2.3 is that any
periodic function can be represented as a sum of such cosine waves, at frequencies that
are integer multiples of the frequency of the annual cycle. Such frequencies are called
harmonics . It follows that if (3.36) does not produce an adequate representation of season-
ality, improvements may be obtained by adding covariates cos(4πt/S) and sin(4πt/S),
then cos(6πt/S) and sin(6πt/S) and so forth. Our experience is that one or two addi-
tional harmonics are enough to capture the seasonal structure of most environmental
series. Notice that two dummy covariates are associated with each harmonic: hence, with
regularly spaced data at least, at most S/2 harmonics are available. The Fourier repre-
sentation of seasonality is therefore of limited value for coarse-resolution (e.g. quarterly)
regularly spaced data. It is much more useful, however, for data at finer resolution. For
example, to fit an annual sinusoid plus one harmonic to a monthly time series involves
the estimation of four parameters, rather than the 11 that would be required by treating
‘month’ as a factor. Furthermore, the Fourier representation can be applied directly to
irregularly spaced data since the dummy covariates are defined exactly at all time points.
The alternative – to group the data into, say, months and treat these as factors – results
in some loss of information since it effectively coarsens the temporal resolution of
the data.
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3.2.2 Interactions

Suppose now that a quantity of interest depends on two covariates, but the effect of one
of these depends on the value of the other as in the following model:

Yt = β0 + β1x1t + β2t x2t + εt (3.37)

with β2t = γ0 + γ1x1t , say. (3.38)

In this case the covariates are said to interact . For example, x1t and x2t may represent
respectively some aspect of seasonality and a linear trend; then (3.38) would imply that
the slope of the trend varies with the time of year.

Substituting (3.38) into (3.37), we obtain

Yt = β0 + β1x1t + (γ0 + γ1x1t ) x2t + εt

= β0 + β1x1t + γ0x2t + γ1x1t x2t + εt , (3.39)

which has the same form as (3.37) but with an extra term added, containing the prod-
uct x1t x2t . This illustrates the general procedure for accommodating an interaction in
a multiple regression model: simply add an extra interaction term , defined using the
product of the interacting covariates. Notice that interaction terms are symmetric in their
covariates: (3.38) implies that x1t modulates the effect of x2t , but (3.39) would still be
obtained if the roles were reversed. In the trend – seasonality example this role reversal
would be expressed by saying that the seasonal cycle changes through time. The preferred
interpretation of an interaction will often depend on the context.

In (3.39), the terms involving single covariates are called main effects . It is worth
considering the interpretation of the associated regression coefficients. From (3.38) it is
clear that γ0 is the coefficient of x2t when x1t = 0. Now suppose that we change the units
of measurement of x1t , replacing it with x∗

1t = x1t − c, say, for some arbitrary constant
c. Clearly, this will not affect the model’s ability to represent the relationships between
the covariates and response (it is effectively the same as changing the time index in the
linear trend model, as in Section 3.1.2), but some of the coefficients in the model must
change to accommodate it. In particular, the new coefficient of x2t will represent the
effect when x∗

1t = 0 or equivalently when x1t = c. Depending on the value of c, this may
be very different from γ0 – it may even have the opposite sign. This shows that in the
presence of interactions, the coefficient corresponding to the main effect of one interacting
covariate depends on the units of measurement of the other! The lesson from this is that
main effects should be interpreted with care in the presence of interactions.

Interaction terms offer the possibility of representing relatively complex relationships
within a single model. They are not restricted just to pairs of covariates, although those
of order higher than three can be difficult to interpret. In a trend analysis, interactions
involving a trend function are an economical, and aesthetically appealing, alternative to the
common practice of estimating trends separately for different subsets of data (e.g. different
months of the year); they also offer increased flexibility, and hence the opportunity to
represent more realistically the structure of any trends that may be present. If, for example,
seasonality is represented via a smooth Fourier representation, as discussed above, a
seasonal – trend interaction implies that the estimated trends vary smoothly throughout
the year rather than changing suddenly between months. The interaction based approach
also reduces the temptation to test for the significance of trends separately in different
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subsets of data: apart from the inherent dangers of carrying out multiple significance tests
(Manly, 2001, Section 4.9; see also Cox, 2006, Section 5.15 for a clear and succinct
summary of the scientific issues at stake), such procedures are easily misinterpreted and
can lead to confusing conclusions, such as that ‘genuine’ trends exist in (for example)
June and August but not in July.

A potential disadvantage of using a single model to represent the structure of an entire
data set is that assumptions such as constant error variance may hold approximately within
subsets of the data but not overall. For example, there is clear seasonal structure in the
variances of the daily wind speed data illustrated in Figure 2.2, but within any individual
month the variances are likely to be much more nearly constant. We discuss how to
address such issues in Section 3.3.

3.2.3 Model building and selection

Multiple regression provides a flexible and powerful way to represent structure in a data
set. The cost of this flexibility is the need to think carefully about which covariates and
interactions to include in a model. The most common way to decide whether a term should
be included is to examine the t statistic for the associated coefficient estimate. However, if
two or more covariates are highly correlated (or collinear) these t statistics can be difficult
to interpret unless the sample size is extremely large: it can appear that neither covariate
is necessary, when exploratory analysis clearly indicates that at least one of them is (see
Chandler, 1998, for an example of this). The reason for such apparent anomalies is that
if either covariate is dropped from the model, the estimated coefficient of the other can
be adjusted to compensate. Another way to view the problem is that if two covariates
are highly collinear, it is difficult on the basis of the data alone to determine which
(if either) is genuinely responsible for changes in the response; this uncertainty will be
reflected in large standard errors for the coefficient estimates. The increase in uncertainty
due to correlation between covariates can be quantified using variance inflation factors ,
as described by Fox (2002, Section 6.5) and implemented in the car library in R (Fox,
2009). See also the contribution by Zuur et al . in Chapter 9 of the present volume.

If the covariates in a regression model are mutually uncorrelated, t statistics are
usually much easier to interpret. Usually this can only be achieved by controlling the
covariate values carefully in a designed experiment; the experimental design is then said
to be orthogonal . Unfortunately, as noted in Chapter 1, such experimental control tends
to be the exception rather than the rule in environmental studies. Nonetheless, it is some-
times possible to write a model in such a way that at least some of the covariates are
uncorrelated. In a trend analysis, perhaps the most useful example of this is the use of
orthogonal polynomials to represent moderately nonlinear trend functions. Suppose, for
example, that after fitting a linear trend model of the form (3.2), a time series plot of
residuals showed some curvature. In this case one might want to try and improve the fit
by including a quadratic term:

Yt = β0 + β1t + β2t
2 + εt .

In this model, the covariates x1t = t and x2t = t2 both increase as t runs from 1 to T ;
hence collinearity is likely to be a problem. If, however, x1t = t and x2t = t2 are replaced
by new covariates x∗

1t = x1t − x1 and x∗
2t = x2t + ax1t + b, with

a = −
∑T

t=1 x1t (x2t − x2)∑T
t=1 x1t (x1t − x1)

and b = − (x2 + ax1) , (3.40)
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then it can be verified that the new covariates x∗
1t and x∗

2t both have mean zero and are
uncorrelated (i.e.

∑T
t=1 x∗

1t x
∗
2t = 0). Therefore the t-statistics from a model fitted using

x∗
1t and x∗

2t can be used to distinguish unambiguously between them (notice that x∗
1t is the

centred time from Example 3.4, where its use resulted in a convenient diagonal covariance
matrix for the regression coefficient estimates). Furthermore, they are interpretable: x∗

1t is
a ‘linear’ component of trend, whereas x∗

2t is a quadratic component. Cubic and higher-
order polynomials can be constructed in a similar way; in R, this is implemented in the
command poly.

The development leading to (3.40) applies to both regularly and irregularly spaced
time series. Indeed, it can be used to transform any pair of correlated covariates into
an uncorrelated pair. Notice, however, that it treats the covariates asymmetrically – x∗

1t

depends only on x1t , whereas x∗
2t is a combination of x1t and x2t – and this is often difficult

to justify. In more general settings, principal components regression is an alternative
approach to dealing with collinearity, which treats all covariates on an equal footing. A
good discussion of this can be found in Faraway (2005, Chapter 9).

An alternative way to assess the importance of an individual covariate is to drop it
from the model and investigate the effect upon model performance as measured by the
residual sum of squares. Let RSS1 denote the sum of squares for the original model and
RSS0 that for the reduced model (i.e. after dropping the covariate); then the comparison
is usually based on the F statistic

F = (RSS0 − RSS1) /m

RSS1/(T − k)
, (3.41)

where m = 1 is the number of terms dropped from the original model and, as previously,
k is the number of regression coefficients in this model. Under the null hypothesis that
the data were in fact generated from the reduced model, (3.41) follows an F distribution
with m and T − k degrees of freedom; large values should be taken as evidence against
the null hypothesis.

To some extent, when dealing with individual covariates the use of F tests does not
achieve anything new since, as noted in Section 3.1, the resulting p-value is identical
to that from the t test for the regression coefficient. More generally, however, F tests
can be used to compare any sequence of nested models , by which we mean a sequence
in which each successive model is a generalisation of the one before. For example, we
might start by fitting a model containing just seasonal covariates, then add a linear trend
term, followed by terms representing seasonal – trend interactions, at each stage carrying
out an F test to see if the increase in model complexity is justified. The results of such
a sequence of tests are usually displayed in an analysis of variance (ANOVA) table,
showing the reduction in sums of squares achieved at each stage (in R, this is achieved
using the anova command). Here, a useful generalisation over the usual t tests is that
it is possible to test for the significance of several terms simultaneously (the quantity m

in the numerator of (3.41) represents the number of extra coefficients estimated in the
more complex model). Simultaneous testing may be required, for example, when using a
Fourier representation of seasonality (see the end of Section 3.2.1) or when considering
interaction terms. More details are given below.

The concept of a nested sequence of models is helpful insofar as it forces the analyst to
think in a structured way about the model-building process. A possible disadvantage is that
the final model selected can depend on the order in which terms are considered. However,
in environmental problems an understanding of the underlying process often dictates
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a natural ordering. The following guidelines may be helpful when building regression
models:

• Start with a simple model including just covariates that are obviously relevant (on
the basis either of prior understanding of the process or of exploratory analysis), as
well as those that are not of direct scientific interest but for which adjustment may
be required. Such a model serves as a baseline against which to judge successive,
more complex, models.

• The reason for including covariates that are not of direct scientific interest is to
adjust for their effects. To ensure that such effects have been properly accounted
for, it may be worth keeping such covariates in a model even though they do not
meet the usual criteria for statistical significance. Here, there is a link with the
common practice of adjusting the data to remove possible unwanted structure,
without formally testing for its significance, prior to analysis (see Section 3.2).
Clearly there is a balance to be struck, since the inclusion of too many such
covariates will generally reduce the precision with which the effects of scientific
interest can be estimated (Davidson and Mackinnon, 2004, Section 3.7). However,
given enough data this is unlikely to be a major problem.

• Build up a model gradually, using an understanding of the underlying processes to
suggest what may be the most important new terms to add at each stage. It is also
worth examining diagnostics such as plots of residuals against potential covariates,
to indicate the most promising directions in which to expand the model.

If this guideline is followed, functions of the time index will often be among
the last terms to be added to a model since, almost by definition, these represent
trends that cannot be explained in any other way using the available data.

• It is possible for individual covariates to operate primarily by controlling the effect
of others. In such situations, one would expect an insignificant main effect but
significant interactions. In general, therefore, an insignificant main effect does not
necessarily mean that the associated covariate is irrelevant; it may be necessary to
explore the interactions more deeply. One may then want to assess simultaneously
the significance of a main effect together with all its interactions; this is an example
of a situation where an F test can be used but an ordinary t test cannot.

If a covariate has significant interactions but an insignificant main effect, the lat-
ter should usually be retained in the model. This is sometimes called the marginality
principle, and can be justified by considering that when interactions are present,
the main effects depend on the choice of origin on the covariate measurement scale
(see Section 3.2.2). Therefore, unless the origin has a clear interpretation in the
context of the problem at hand, it is scientifically meaningless to test whether a
main effect is ‘truly’ zero. Moreover, unless the main effects are all included, fitted
values and predictions are origin-dependent. Nelder (2000) gives an example of a
model in which temperature is used to predict ozone concentrations but, because it
does not respect the marginality principle, yields different predictions depending on
whether temperature is measured in degrees Celsius or Fahrenheit. This is clearly
unsatisfactory.

A similar comment applies when using a Fourier representation of seasonality:
the use of sine and cosine terms is merely a convenient device for representing the
function (3.36), and the relative magnitudes of the associated coefficients depend
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solely upon the choice of time origin. Usually, therefore, sine and cosine terms
should be considered in pairs.

• As a modelling exercise develops, covariates that appeared significant in the early
stages may become less so. At appropriate points it may therefore be appropriate to
delete some of these before continuing to expand the model. In general, however,
it is probably best to err on the side of caution, at least until all of the covariates
of scientific interest have been considered. Once this has been done, the effect of
deleting terms from the model can be explored; the choice of terms to delete might
be based on the t statistics for the regression coefficients, for example. However,
when deleting more than one term simultaneously it will once again be necessary
to use an F test to examine the effect.

It is sometimes desirable to compare models that are not nested, because each contains
covariates that do not appear in the other. In this case an F test cannot be used for the
comparison. A widely used alternative, which can be used for both nested and non-
nested comparisons, is the information criterion introduced by Akaike (1974) and now
generally referred to as Akaike’s Information Criteria (AIC). This attempts to select
models automatically by minimising some measure of (lack of) performance while taking
into account the complexity of the model. The measure is defined as minus twice the
log-likelihood for the model (see Section 3.1.6), plus twice the number of parameters
estimated. ‘Good’ models yield high log-likelihoods with relatively few parameters; hence,
under this measure, if two models yield values AIC1 and AIC2 respectively and AIC1 <

AIC2, the first model is preferable. Various alternatives to AIC have been proposed (see
Davison, 2003, Section 4.7), but they all operate along similar lines. The R command
drop1 can be used to see what would be the effect upon the AIC of removing individual
covariates from a regression model.

The model-building process described above requires quite a high level of informed
decision-making on the part of the analyst. It can be tempting to try and avoid this by using
an ‘automatic’ method of model selection, of which stepwise regression (implemented
via the step command in R) is one of the most popular. Backward stepwise regression
works as follows: start by fitting a model containing all covariates, then see which of
these appears least relevant (using AIC or some other criterion), drop it from the model,
refit and then repeat the process. If a second covariate is deleted, it becomes necessary
to check that the first should not be re-inserted. Stepwise regression thus consists of a
sequence of deletions and additions, until a model is obtained that cannot be improved
upon according to the chosen criterion.

As an alternative to backward stepwise regression, one could start with no covariates
and gradually increase the size of the model; this is called forward stepwise regression.
Note that neither is guaranteed to find an optimal model (if such a thing exists), and
automatic methods will rarely compete with an informed analysis in which the user
brings their understanding to bear on the problem. Uncertainty also tends to be under-
represented in models chosen by automatic methods (see Chatfield, 2000, Section 8.4.2
for a sobering account of this, albeit in a slightly different context). The main value of
such methods is in situations where many routine analyses are required on a regular basis
and it is infeasible to carry out each one manually.

Finally, on the subject of model selection, two models can only be compared formally
if they have been fitted to the same set of observations {Yt}. In many environmental
problems, some covariate values are missing occasionally. In such situations, software
packages often fit models using just the cases for which all covariates, and the response
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variable, are available (note that this carries an implicit assumption that the missingness
itself is noninformative – for example that there is no tendency for unusually high or
low values of the response variable to be missing). This raises the possibility that two
models, involving different covariates, may be fitted to different subsets of data because
fewer ‘complete cases’ are available for the larger model. In this case the comparisons
described above are not valid. A correct analysis should use only the subset of cases for
which both models can be fitted.

Example 3.7
The alkalinity data from the Round Loch of Glenhead (Section 1.3.3) provide a good
opportunity to illustrate the use of multiple regression techniques in a trend analysis. Recall
that the questions of interest here concern the impact of nonmarine sulfate deposition on
the alkalinity of the loch, but that this can also be affected by marine deposition events for
which chloride is an indicator and by weather conditions represented by daily temperature
and rainfall. We saw in Figure 2.5 that autocorrelation in the alkalinity series could
conceivably be explained by trends, and hence by dependence on the other chemicals;
hence it is appropriate to start by building regression models under the assumption that
the errors are uncorrelated. If this is incorrect, there will be a tendency to overstate the
significance of relationships, as discussed below in Section 3.3; hence we may be led
to a model that is unnecessarily complex. However, in the first instance this is perfectly
acceptable: the model can always be simplified later if necessary.

Consideration of the processes involved suggests that at each sampling time the
recorded alkalinity will depend primarily on weather conditions over some previous time
interval. The duration of this interval depends upon a variety of factors, such as the
size of the loch and the hydrological properties of the surrounding catchment. Accurate
assessment of the most appropriate interval is difficult without extensive data on catchment
characteristics and geology. We have therefore adopted the simple device of aggregating
the meteorological variables separately over weekly, monthly and quarterly time windows
(actually 7, 30 and 91 days) prior to each sampling time. Temperatures were aggregated
by taking averages, whereas rainfalls were aggregated by calculating cumulative totals.
Each of the aggregates was then standardised, using the scale command in R,1 to have
zero mean and unit variance. This does not affect the fit of any regression model; it does,
however, ensure that the magnitudes of the regression coefficients are directly comparable
in terms of their effect on the alkalinity, which is useful since one of the aims of the
analysis is to determine the relative importance of the different covariates. The standard-
ised weekly, monthly and quarterly temperatures are referred to below as Wtemp, Mtemp
and Qtemp respectively, and the rainfalls as Wrain, Mrain and Qrain.

For the sulfate and chloride covariates (denoted respectively, after standardisation, by
xSO4 and Cl), the cross-correlation analysis in Section 2.1.5 suggested weak association
between alkalinity and chloride but was less clear about the association with sulfate.
Further preliminary analysis, not shown here, suggested that of all the potential covariates
in the data set, quarterly temperature (Qtemp) has the strongest relationship with alkalinity.
This is consistent with weather being the primary driver of variations in water chemistry.

On the basis of these considerations, we start by developing a baseline model in which
alkalinity is regressed on the meteorological variables only. The effect of rainfall may
itself be temperature-dependent since, among other things, warmer temperatures lead to
enhanced evaporation and hence a reduction in the amount of rainwater reaching the loch.

1 This simply subtracts the mean of a variable and divides by its standard deviation.
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Therefore, as well as considering the rainfall and temperature variables individually we
examine interactions between them, and fit a model containing all six weather variables
together with a rainfall – temperature interaction at each timescale. This is obviously
far too complex a model: indeed, apart from the intercept only the Qtemp coefficient is
significant at the 5 % level. We therefore use stepwise regression (the step function in R,
with default settings) to simplify the model in the first instance. This removes the Qrain

term, together with the Qtemp:Qrain interaction. Examination of the result suggests that
all of the weekly terms are also redundant. If these terms are removed, we obtain the
model given in Table 3.4. Notice here that Mtemp and Mrain do not appear significant
at the 5 % level; however, the interaction between them is highly significant, so the main
effects are retained, as discussed previously.

Table 3.4 Edited R output for the baseline alkalinity model.

Estimate Std. Error t value Pr(›|t|)
(Intercept) -12.3722 0.5401 -22.906 ‹ 2e-16 ***

Qtemp 4.1581 0.9413 4.417 4.96e-05 ***

Mtemp -1.9794 1.0250 -1.931 0.05882 .

Mrain 0.2127 0.5483 0.388 0.69967

Mtemp:Mrain -1.7977 0.5852 -3.072 0.00335 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1

Residual standard error: 3.525 on 53 degrees of freedom

Multiple R-Squared: 0.4255, Adjusted R-squared: 0.3821

F-statistic: 9.812 on 4 and 53 DF, p-value: 5.142e-06

The F statistic reported in Table 3.4 is for testing the hypothesis that the model
has no predictive power (see Section 3.1). While it is reassuring that this hypothesis is
emphatically rejected, there are perhaps more interesting questions to be asked at this
stage. An obvious one is whether, in dropping five terms from the initial model, we have
inadvertently oversimplified it. This can be answered by comparing the two models using
an F test. Using anova in R, the value of the test statistic (3.41) is obtained as 0.7487,
on 5 and 48 degrees of freedom (the latter because there are T = 58 observations in
total and 10 parameters were estimated in the more complex model). The p-value for the
test is 0.591: this gives no evidence to reject the null hypothesis, so we conclude that
simplification is justified (and, in passing, that the initial use of stepwise regression was
not very effective in finding a reasonable model).

The time series of residuals for the baseline model in Table 3.4 (not shown) shows
essentially the same trend as the original data (see Figure 1.3). This is unsurprising, given
the absence of pronounced trends in either the temperature or rainfall series. Interestingly,
however, the mean residuals in each quarter are close to zero and the autocorrelation
function of the residuals looks almost identical to that for the deseasonalised alkalinity
series in Figure 2.5. This indicates that seasonality in the alkalinity series can be explained
entirely via weather conditions, which seems plausible.

Having established a reasonable baseline model, we investigate the effects of xSO4 and
Cl. On the basis of the cross-correlation analysis in Section 2.1.5, and of our understanding
of the processes involved, we consider only simultaneous, rather than lagged, relationships
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with these covariates. We do, however, consider the possibility that they may interact
with the meteorological variables. We therefore proceed by adding xSO4 and Cl to the
baseline model, along with each of their interactions with Qtemp, Mtemp and Mrain. A
summary of the resulting model reveals that all the chemical – meteorological interaction
terms appear insignificant; we therefore delete them all and check that this is justified
using an F test, which yields a p-value of 0.310. The simplified model is summarised in
Table 3.5. Both xSO4 and Cl appear significant, with evidence of quite a strong negative
xSO4 effect (recall that, at least for the main effects, the regression coefficients are directly
comparable since we have standardised all of the covariates) – this is consistent with the
idea that reduced acidity will follow from a reduction in sulfur deposition. There is also
a considerable improvement in the explanatory power of the model: the adjusted R2 has
risen from 38.2 % to 52.2 %. A formal comparison with the baseline model indicates that
the improvement is significant: the F statistic is 8.987 on 2 and 53 degrees of freedom,
with an associated p-value of 5.2 × 10−4.

Table 3.5 Edited R output for the alkalinity model including sulfate and chloride
effects.

Estimate Std. Error t value Pr(›|t|)
(Intercept) -12.1845 0.4801 -25.377 ‹ 2e-16 ***

Qtemp 3.8333 0.8724 4.394 5.64e-05 ***

Mtemp -1.7117 0.9369 -1.827 0.07357 .

Mrain 0.1941 0.4830 0.402 0.68939

xSO4 -1.4347 0.4139 -3.467 0.00108 **

Cl -1.0826 0.4418 -2.451 0.01773 *

Mtemp:Mrain -1.4031 0.5350 -2.623 0.01148 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1

Residual standard error: 3.101 on 51 degrees of freedom

Multiple R-Squared: 0.5723, Adjusted R-squared: 0.5219

F-statistic: 11.37 on 6 and 51 DF, p-value: 4.97e-08

It remains to check the model. A normal quantile–quantile plot (not shown) shows that
the assumption of normality appears to hold reasonably well; further, the Cook’s distances
and leverages (see Section 3.1.5) reveal no particularly influential observations. However,
Figure 3.3 shows that not all of the model assumptions appear to be satisfied. In the first
instance, some trend remains in the residual time series in Figure 3.3(a) – this is apparent
from the superimposed lowess smooth (see Section 4.3.1). It therefore appears that the
model does not account for all of the trend in the alkalinity. Furthermore, Figure 3.3(b)
shows that while there is no seasonal structure in the mean residuals, the assumption
of constant variance may not hold: the residuals in quarter 4 appear more variable than
those in the other three quarters. Finally, the residuals still appear weakly autocorrelated,
according to the ACF in Figure 3.3(c). The correlation is weaker than for the original data
and for the baseline model (see Figure 2.5), but the coefficients are still predominantly
positive to a lag of around two years. A Durbin–Watson test (see Section 3.1.1) yields a
p-value of 0.014, indicating that the residual autocorrelation is significant. In view of these
results, it is probably unwise to overinterpret the output in Table 3.5. We will return to this
example after discussing how to deal with failures of assumptions in regression models.
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Figure 3.3 Residual plots for the alkalinity model in Table 3.5: (a) time series of resid-
uals, with lowess smooth (dashed line), (b) residual distributions by quarter, (c) residual
autocorrelation function.

�

3.3 Violations of assumptions

We have so far discussed how to fit and check linear models and how to use them for
extrapolation if the model assumptions appear to be satisfied. We now turn to the question
of how to proceed when this is not the case.

3.3.1 Dealing with heteroscedasticity

Heteroscedasticity (i.e. nonconstant variance) is easier to deal with than either non-
normality or autocorrelation. The simplest approach is to work with transformed data,
where the transformation is chosen so as to induce a constant variance. For example, the
variance of the untransformed haddock biomass series decreases through time, but this
feature is not present in the log-transformed series. Other commonly used transformations
include the square root and cube root. However, if appropriate, the logarithmic transfor-
mation is often particularly convenient for interpretation. For example, a linear trend with
slope β1 on the log scale corresponds to an average proportional increase of exp(β1) per
unit time on the original scale. For the haddock stocks model in Table 3.2, this estimated
proportional increase is exp(−0.0370) = 0.96; the implication of this model is therefore
that North Sea haddock biomass decreased at an average rate of 4 % per year between
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1963 and 2000. This is a very natural way of expressing the result, and is arguably more
meaningful in biological terms than an analysis based on untransformed data (Buckland
et al ., 2004, Section 5.3). Of course, the logarithmic transformation can only be used for
positive-valued series, but this is applicable in many environmental applications (species
numbers, pollutant concentrations and so forth) and, in such cases, a further advantage
is that the fitted values from a regression model are guaranteed to be positive after
back-transformation to the original measurement scale.

Unfortunately, it may not always be possible to find a transformation that stabilises
the variance adequately throughout the series. Even when it is possible, it may not be
desirable. One reason for this is that transforming the data will change the nature of any
trend that is present – if the original data follow a linear trend, their logarithms will not.
Another reason is that the interpretation of model parameters such as regression slopes
can be difficult, except for a few special cases such as the logarithmic transformation.
If transformation is not possible, or is undesirable, the most appropriate resolution to
the problem depends on the nature of the heteroscedasticity. We distinguish between the
following scenarios:

(a) The variance of Yt is

Var (Yt ) = σ 2

wt

, (3.42)

where σ 2 is unknown but the relative precisions w1, . . . , wT are all known. This
might sound unrealistic but arises in practice, for example, when the data are
estimates of some quantity of interest derived from repeated surveys (as in wildlife
abundance monitoring). In the simplest case, the variance of the estimate at
time t will often be proportional to 1/nt , where nt is the sample size for the
corresponding survey.

(b) The variance of Yt appears to be related to the mean level so that, for example,
large values of Yt tend to be more variable than small values.

(c) The variance of Yt appears to be related to other factors, for example the time of
year. Of course, these factors may themselves influence the mean of the series,
but perhaps not in such a way as to induce a straightforward relationship between
the variance and the mean.

(d) The variance seems to fluctuate gradually through time, but not in a systematic
way.

Scenarios (b) and (c) are most easily dealt with using generalised linear models
(Section 3.5). Scenario (d) is encountered frequently in financial applications; for
example, the variability (or volatility) of stock market returns shows short-term fluctua-
tions depending on market conditions. In the financial and econometric literature, such
series are often modelled using generalised autoregressive conditionally heteroscedastic
(GARCH) models. In environmental applications, however, the processes controlling
variability are usually rather more tangible than this. We therefore do not consider
scenario (d) further in this book, beyond noting that Tol (1996, 1997) developed GARCH
models for temperature and wind speed data and that Franses, Neele and van Dijk,
(2001) extended these models to allow for asymmetric distributions in temperature data.
The interested reader is referred to these references for further details.
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Returning therefore to scenario (a): when the relative precisions are known, it is natural
to attach more importance to the most precise observations when estimating parameters. In
fact, if the assumptions of normality and independence are satisfied, the optimal parameter
estimates in a linear model are derived by minimising the weighted sum of squares

Sw(β) =
T∑

t=1

wt

(
Yt − β0 −

p∑
i=1

βixit

)2

.

Most computer implementations work on the principle that Sw(β) can be rewritten as
T∑

t=1

[
Yt

√
wt −

(
β0

√
wt +

p∑
i=1

βixit

√
wt

)]2

, (3.43)

whence the weighted least squares estimates can be obtained from a least squares regres-
sion in which each observation Yt , along with the corresponding row xt of the design
matrix X, is first multiplied by

√
wt .

Some care is required with the interpretation of software output for weighted least
squares. For example, the estimate of σ 2 in (3.42) depends on the absolute values of
the weights: if all of the weights are doubled, their relative values (and hence the fitted
model) will be unchanged but the estimate of σ 2 will be halved. A further point is that
each residual should be multiplied by the square root of the corresponding weight before
producing residual plots; under the model, these scaled residuals should have constant
variance. In R currently, some but not all of the built-in linear model diagnostics use
these scaled residuals – for example, the normal quantile–quantile plot uses them, but
the default plot of residuals against fitted values does not.

To understand the properties of weighted least squares estimators, it is convenient
to adopt a matrix based approach. The analogue of the normal equations (3.14) can be
written as

[
X′WX

]
β̂ = X′WY, (3.44)

where W is a diagonal matrix containing the weights {wt }. The properties of the
estimators can be derived from this matrix representation in exactly the same way as
before – for example, in the absence of autocorrelation the covariance matrix of β̂ is
now σ 2

(
X′WX

)−1
. Compare this with the expression given at (3.18).

3.3.2 Dealing with non-normality

As with heteroscedasticity, often the simplest way to deal with non-normality is to trans-
form the data. In particular, the assumption of normality is at best an approximation for
quantities that are necessarily non-negative, because the normal distribution can take neg-
ative as well as positive values. An obvious way around this particular difficulty is to work
with the logarithms of the data – although, of course, the mere fact that the logarithms
can take any real value is no guarantee of normality. Logarithmic, square root and cube
root transformations are often used in the hope that the result will not only have constant
variance but will also yield residuals with a distribution that is close to normal. In this
context, these transformations are all special cases of the Box –Cox transform , defined as

y∗(λ) =
{

log y, λ = 0,(
yλ − 1

)
/λ, otherwise.

(3.45)
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In our haddock stocks analysis, by working with log transformed data we have effectively
chosen to fix the value λ = 0. In principle, we could estimate the ‘optimal’ value of λ

using the maximum likelihood (see Section 3.1.6) and test the hypothesis H0 : λ = 0
as a means of checking that the log transform is appropriate. In R, this can be achieved
using the boxcox command; see Faraway (2005, Chapter 7) and Venables and Ripley
(1999, Section 6.8) for details.

Some arguments for and against data transformation were given in the previous sub-
section. For some types of data, however, no transformation will induce normality, even
approximately. The most obvious example of this is when the observations are binary-
valued, as when recording the presence or absence of some phenomenon of interest (for
instance whether or not it rains, or whether a particular species is sighted during a sur-
vey). It is sometimes possible to circumvent such problems by working with aggregated
data – for example, the distribution of the total number of rainy days in a year will be
approximately normal in most locations – but this is unsatisfactory unless the aggregated
data are of scientific interest in their own right. These and other limitations can be over-
come to a large extent through the use of generalised linear models (GLMs), which are
discussed in Section 3.5.

3.3.3 Dealing with autocorrelation

As noted in Section 3.1.1, ordinary least squares may deliver reasonable estimates of
parameters in a regression model even if the errors are autocorrelated, but the associated
standard errors will be incorrect. This suggests that a simple way to deal with autocor-
relation is to adjust the standard errors after fitting a model using least squares. A very
crude form of adjustment is based on the idea that the information content of T autocor-
related observations is in some sense equivalent to that of T ∗ independent observations,
where T ∗ < T is the effective sample size; therefore one could compute standard errors
and tests by replacing T in the usual formulae with T ∗. This approach is discussed in
von Storch and Zwiers (1999, Section 17.1), Santer et al . (2000) and references therein.
For example, suppose the errors are generated according to a first-order autoregressive
process or AR(1) (see Chapter 5):

εt = φεt−1 + δt , (3.46)

where |φ| < 1 and (δt ) is a white noise sequence. Then it can be shown that the effective
sample size for estimating a mean is

T ∗ = T × 1 − φ

1 + φ
.

In general, however, the ‘effective sample size’ approach is rather unsatisfactory since
its justification is somewhat heuristic and its implications are not always clear. When
adjusting standard errors in regression models, it is preferable to start by considering the
exact expression for the covariance matrix of the parameter estimates, which is given
by Equation (3.17). This expression shows that if �̂ denotes an estimate of the error
covariance matrix �, we can estimate the covariance matrix of β̂ as

(
X′X

)−1
X′ �̂ X

(
X′X

)−1
. (3.47)

Adjusted standard errors can then be obtained as the square roots of the diagonal elements
of this matrix. Note that the (t, s) element of � is the covariance between εt and εs .
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For any regression model that fits the data at all well in a time series context, it is
usually reasonable to assume that (εt ) is a stationary process and hence has a theoretical
autocorrelation function {ρ(k)} (see Section 2.1.3). In this case, the (t, s)th element of �

is just σ 2ρ(t − s). For regularly spaced series, this gives rise to a banded diagonal (or
Toeplitz ) structure:

� = σ 2

⎛
⎜⎜⎜⎜⎜⎝

1 ρ(1) ρ(2) · · · ρ(T − 1)

ρ(1) 1 ρ(1) · · · ρ(T − 2)

ρ(2) ρ(1) 1 · · · ρ(T − 3)
...

...
...

. . .
...

ρ(T − 1) ρ(T − 2) ρ(T − 3) · · · 1

⎞
⎟⎟⎟⎟⎟⎠

.

This suggests estimating � by replacing the theoretical autocorrelations with their sample
counterparts (i.e. the residual autocorrelations) and using the residual variance σ̂ 2 in place
of σ 2. Unfortunately, this tends not to work very well because it requires the estimation
of T − 1 autocorrelations and one variance from T observations (after fitting a regression
model with k parameters!). A better alternative may be to fit a time series model (see
Chapter 5) to the error process (εt ) and to base the estimate of � on the autocorrelation
function for the fitted model. The exact choice of model may be based on an inspection
of the residual autocorrelation function. It is common, however, to proceed as though the
errors form an AR(1) process of the form (3.46). For such a process, the autocorrelation
at lag k is just ρ(k) = φk, and the parameter φ can be estimated using the residual
autocorrelation at lag 1, r(1) = φ̂, say. The estimate of � is therefore

�̂ = σ̂ 2

⎛
⎜⎜⎜⎜⎜⎝

1 φ̂ φ̂2 · · · φ̂T −1

φ̂ 1 φ̂ · · · φ̂T −2

φ̂2 φ̂ 1 · · · φ̂T −3

...
...

...
. . .

...

φ̂T −1 φ̂T −2 φ̂T −3 · · · 1

⎞
⎟⎟⎟⎟⎟⎠

. (3.48)

For irregularly spaced series the same ideas can be applied (see Section 5.4), but �̂ no
longer has a Toeplitz structure.

For obvious reasons, a covariance matrix estimator of the form (3.47) is called a
sandwich estimator . As well as adjusting for autocorrelation, sandwich estimators can be
used, via suitable choices of �, to allow for other aspects of model misspecification such
as heteroscedasticity (Davidson and Mackinnon, 2004, Section 5.5) or if a linear trend
model has been fitted when the underlying trend is not truly linear. Providing the sample
size is not too small, such estimators generally protect well against the possibility of
drawing erroneous conclusions from an incorrect model. However, for small samples with
relatively strong dependence, they may still be inaccurate (Kauermann and Carroll, 2001).

Rather than merely adjusting for autocorrelation, one may consider accounting for
it explicitly during the model-fitting process. For some time, the method of Cochrane
and Orcutt (1949) provided a popular and easily implemented means of achieving this.
Although this has largely been superseded by generalised least squares as discussed
below, it is still helpful to consider the basic argument. Suppose that in the multiple
regression model (3.34), the error terms follow the AR(1) process (3.46). Now consider
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the quantity

Yt − φYt−1 = β0 +
p∑

i=1

βixit + εt − φ

[
β0 +

p∑
i=1

βixi(t−1) + εt−1

]

= (1 − φ)β0 +
p∑

i=1

βi

(
xit − φxi(t−1)

) + εt − φεt−1

= (1 − φ)β0 +
p∑

i=1

βi

(
xit − φxi(t−1)

) + δt . (3.49)

This has the form of a regression equation in which the quantities Yt − φYt−1 are regressed
on covariates {xit − φxi(t−1)} and the error term is δt . However, (δt ) is a white noise
sequence. Therefore, if φ were known we could fit (3.49) by ordinary least squares
to obtain estimates of β1, . . . , βp, together with their standard errors (notice that the
first observation would have to be omitted, since we cannot compute Y1 − φY0 without
observing Y0.). To obtain an estimate of β0, we could then divide the constant term in the
resulting regression (along with its standard error) by 1 − φ. In practice of course, φ is
rarely known, but as a preliminary estimate we could use the lag 1 autocorrelation from
an ordinary least squares fit of the original regression model. If necessary, the estimate
of β from (3.49) could then be used to construct a revised set of residuals, and hence
an updated estimate of φ, and the whole procedure could be iterated to convergence
(which is guaranteed – see Davidson and Mackinnon, 2004, Exercise 7.18). The effect
of estimating the autoregressive coefficient φ is not accounted for in the standard errors
obtained from the procedure, but the effect of this is negligible in large enough samples
providing the covariates do not include previous values of the response variable (Davidson
and Mackinnon, 1993, pages 338–339).

As noted above, the Cochrane–Orcutt procedure has now been largely replaced by
generalised least squares (GLS), although we will shortly see that there is a close con-
nection between the two. If the covariance matrix � is known, the GLS estimator of β

minimises the quadratic form

(Y − Xβ)′ �−1 (Y − Xβ) (3.50)

with respect to β . This is equivalent to ordinary least squares when the observations
are uncorrelated and homoscedastic; in this case, the diagonal elements of � are
all equal to σ 2 and the remaining elements are zero. Moreover, in the presence of
heteroscedasticity but no autocorrelation, minimising (3.50) is equivalent to weighted
least squares. The strongest argument for using GLS is that the minimiser of (3.50) shares
the usual optimality properties of the ordinary least squares estimator, but in a much wider
variety of settings (Brockwell and Davis, 2002, Section 6.6). When the errors are
normally distributed, GLS in fact delivers maximum likelihood estimators of the
regression coefficients (see Section 5.1). The routine computation of GLS estimates has,
however, only become feasible relatively recently.

On the face of it, it seems that even with modern computing power, minimising (3.50)
will be a formidable task if T is large: not only must we store the T × T matrix �, but we
must also invert it. However, things are not as bad as they appear. Since � is a covariance
matrix, it is positive definite and hence has a Choleski decomposition (Horn and Johnson,
1985, page 114): � = cLL′, say, where L is a lower triangular matrix and the arbitrary
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nonzero constant c is included for ease of exposition below. Writing � = L−1, we have
�−1 = c−1�′�, and the GLS criterion (3.50) is proportional to

(Y − Xβ)′ �′� (Y − Xβ) = [
� (Y − Xβ)

]′ [
� (Y − Xβ)

]
,

which is just the sum of squared elements of the vector �(Y − Xβ). The GLS estimator
can therefore be computed using ordinary least squares, by regressing the vector �Y on
the columns of the matrix �X. In Section 5.1 we will see that, when the error process can
be modelled using one of the stationary time series models considered there, the matrix �

can be calculated remarkably easily. In particular, in the AR(1) case with |φ| < 1 it can
be shown (Davidson and Mackinnon, 1993, Section 10.6) that for a suitable choice of c,

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

√
1 − φ2 0 0 · · · 0 0
−φ 1 0 · · · 0 0
0 −φ 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0
0 0 0 · · · −φ 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3.51)

For t = 2, . . . , T , the t th element of the resulting vector �Y is given by Yt − φYt−1,
with a similar transformation applied to the rows of the X matrix. This transformation
is identical with that used in the Cochrane–Orcutt procedure: however, GLS enables the
first observation to be incorporated as well. This can make a surprisingly large difference
if the sample size is small or if |φ| is close to 1 – see Davidson and Mackinnon (1993,
Table 10.1). Note that (3.51) cannot be used if |φ| ≥ 1. This is because it is based on
an expression for � derived from the AR(1) autocorrelation function, and the latter is
only defined when |φ| < 1 (see Section 5.1).

The transformation defined by (3.51) was first suggested by Prais and Winsten (1954),
and is therefore sometimes called a Prais –Winsten transformation . The effect is to adjust
each observation for autocorrelation by subtracting contributions from previous time
points; this is true for more general error structures as well, thanks to the lower triangular
form of the matrix � (which itself follows from the lower triangular form of L).

In practice, as with the Cochrane–Orcutt method, the parameters in the correlation
model must themselves be estimated when using GLS. There are various methods for
doing this. In R, GLS can be performed using the arima command (to be discussed further
in Chapter 5) as well as using the gls command in the nlme library (described in Pinheiro
and Bates, 2000). These both offer the possibility of estimation based on maximum
likelihood (as discussed in Section 5.1) or variants thereof. This is particularly convenient
since it enables different models to be compared using criteria such as likelihood ratio tests
(Section 3.5) or the AIC (Section 3.2.3). However, likelihood based GLS procedures make
explicit use of the normality assumption, which therefore needs checking. Furthermore,
it is worth noting that model comparison procedures, confidence and hypothesis tests for
GLS are based on large-sample approximations and should therefore be interpreted with
caution when small numbers of observations are available.

To check regression models fitted by GLS, perhaps the most straightforward approach
is to examine the residuals from the regression of �Y on �X; under the model, these
should be approximately uncorrelated, homoscedastic and (if using likelihood based esti-
mation) normally distributed. In case of concern over the influence of outliers, it may be
desirable to combine this kind of approach with a robust fitting method (see Section 3.1.5).
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Accessible methods for achieving this are currently relatively undeveloped; however, a
useful review and comparison of some simple techniques can be found in Fried and Gather
(2005). A discussion of prediction and extrapolation is deferred until Section 5.1.

The Cochrane–Orcutt and GLS techniques account for autocorrelation via an appro-
priate model for the structure of the error process (εt ) in (3.34). This carries with it
the implication that the autocorrelation is due to dependence among the errors. As an
alternative, one might consider that autocorrelation is due to dependence between the
observations themselves. In this case, it could be modelled by incorporating previous
values of the response variable into the regression equation, for example by writing

Yt = β0 +
p∑

i=1

βixit + φYt−1 + δt (3.52)

in place of the original model, where (δt ) is a white noise sequence. This will be justified
using likelihood based arguments in Section 3.5.

Using techniques to be discussed in Chapter 5 it can be shown that, providing |φ| < 1,
(3.52) can be written as

Yt = β0

1 − φ
+

p∑
i=1

βi

∞∑
j=0

φjxi(t−j) +
∞∑

j=0

φjδt−j .

This is in the same form as (3.34) but with a different constant term, covariates and error.
The covariates are now

∞∑
j=0

φjxi(t−j) (i = 1, . . . , p) (3.53)

and the error term is εt = ∑∞
j=0 φjδt−j . In Chapter 5 we will see that this is in fact

an alternative representation of the AR(1) process (3.46). The ‘lagged response’ model
(3.52) is therefore equivalent to a multiple regression with autocorrelated errors, but with
a different set of covariates. This in turn means that the regression coefficients have
a different interpretation, whence one should beware of fitting a model such as (3.52)
and then interpreting the results as though they were obtained from (3.34). Nonetheless,
if interpretation is not of paramount importance (for example, if the main aim of the
analysis is extrapolation) or if the autocorrelation is relatively weak, then the inclusion
of lagged response variables can be a convenient device. In particular, if the form of
the autocorrelation is unknown, it can usually be accommodated simply by including
enough previous Y values into the regression equation. This is because many stochastic
processes can be approximated reasonably using autoregressions of sufficiently high order
(Chatfield, 2003, Section 13.5). Notice, however, that when fitting lagged response models
it will usually be necessary to discard the first few observations. Y1 cannot be used to
fit (3.52), for example, since Y0 is not available. In such cases, for comparison purposes,
care needs to be taken that all models are fitted to the same subset of data as discussed in
Section 3.2. A further cautionary note is that, as with GLS, inference for lagged response
models is based on large-sample approximations.

There is one special situation in which a lagged response model is directly equivalent
to a multiple regression model, albeit with different parameters. This is when the covariates
themselves are all polynomial functions of time: xit = t i , say. In this case, the trend
represented by (3.52) is a polynomial of degree p in t , and the new covariates defined by
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(3.53) are also polynomials. Therefore, although the models are parameterised differently,
at a fundamental level the only difference between (say) a GLS fit of (3.2) and an ordinary
least squares fit of (3.52) will be due to the omission of initial observations in the latter.

Example 3.8
We now return to the alkalinity series from the Round Loch of Glenhead. In Section 3.2
we fitted a multiple regression model and found evidence of trend, heteroscedasticity and
autocorrelation in the residuals. It is possible that the autocorrelation is itself a reflection
of the unexplained trend; however, here we will take the opportunity to illustrate the use
of the methods described above to account for it.

Table 3.6 shows the results from refitting the previous model using the gls command
in R, with an AR(1) correlation structure and with all parameters estimated using maximum
likelihood. The autogressive parameter φ in (3.46) is estimated as 0.343. Before examining
the remaining output in detail, it is worth carrying out a formal comparison with the
previous version of the model in Table 3.5. Although the models are nested (the previous
model is a special case of the current one in which φ was assumed to be zero), we cannot
compare them using an F test since the new parameter relates to the error structure rather
than to an additional covariate. We can, however, compare their AIC values: that for the
original model is 304.4 and that for the GLS version is 301.1. The reduction suggests that
the GLS fit is preferable, which might have been expected given the result of the earlier
Durbin–Watson test. As an alternative to the AIC, we could use a likelihood ratio test
(see Section 3.5.2) to compare the two models; this again supports the GLS version, with
a p-value of 0.021 leading to rejection of the simpler model at the 5 % level.

Table 3.6 Edited R output for alkalinity model from Table 3.5, fitted using GLS.

Correlation Structure: AR(1)

Parameter estimate(s):

Phi

0.3432038

Coefficients:

Value Std.Error t-value p-value

(Intercept)-12.280443 0.6243128 -19.670339 0.0000

Qtemp 3.724922 0.8106471 4.594998 0.0000

Mtemp -1.688423 0.8586464 -1.966378 0.0547

Mrain 0.063415 0.4161168 0.152397 0.8795

xSO4 -0.995508 0.5330224 -1.867666 0.0676

Cl -1.242109 0.4957674 -2.505426 0.0155

Mtemp:Mrain -1.676306 0.4641772 -3.611349 0.0007

Residual standard error: 2.952969

Degrees of freedom: 58 total; 51 residual

Having established that the GLS fit improves upon the original, we examine it in
more detail. First we examine the coefficient estimates. These are mostly similar to
those in the original model, with the exception of those relating to xSO4 and to the
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Mtemp:Mrain interaction. Indeed, the GLS fit suggests that xS04 has a much smaller
effect than previously: the coefficient has changed from −1.43 to −1.00. Examination of
the standard errors is also instructive. A comparison between Tables 3.5 and 3.6 reveals
that although some have increased in line with expectation, those relating to meteorologi-
cal variables are smaller than previously. This illustrates that standard errors in regression
models cannot generally be adjusted using the ‘effective sample size’ approach discussed
at the beginning of this section.

The most important consequence of the changes is that the coefficient of xSO4 is now
(just) insignificant at the 5 % level, whereas before it appeared highly significant. It is
rather unfortunate that this should be the coefficient that is most sensitive to a change in
the model assumptions, since this is precisely the coefficient of most scientific interest!
At first sight, given that the residual autocorrelation in Figure 3.3 seemed very weak, it is
surprising that the use of GLS should make such a difference to the results. An explanation
can be found in the fact that the xSO4 series is itself more highly autocorrelated than any
of the other covariates. Without explicitly allowing for autocorrelation in the alkalinity
series, the least squares fit in Table 3.5 had essentially to ascribe all of the autocorrelation
to a relationship with xSO4. However, the use of GLS removes this limitation, and our
formal model comparisons suggest that the autocorrelation structure is better described
through an AR(1) residual process that is unrelated to xSO4.

Figure 3.4 shows residual plots for the GLS fit. A comparison with the correspond-
ing plots in Figure 3.3 shows a marked improvement: not only has the autocorrelation
effectively vanished, but there is also less evidence of heteroscedasticity now. There is
still some residual trend, with the dashed lowess smooth rising at the end of the series in
Figure 3.4(a). For comparison, however, the corresponding smooth for the baseline model
in Table 3.4 is also presented. It is clear that the inclusion of Cl and xSO4 has removed
a large part of the trend, albeit without eliminating it entirely.

As an alternative to the use of GLS, we could account for autocorrelation by including
the previous quarter’s alkalinity in the regression equation. As discussed above, the first
observation must be discarded to fit the resulting model, and the interpretation of the
coefficients changes. When the model is fitted, the output in Table 3.7 is obtained. In this
model, the coefficients of both xSO4 and Cl are almost equal and differ significantly from
zero at the 5 % level, as does the coefficient of Yt−1 (estimated as 0.259 and labelled as
Lag1 in Table 3.7). Some of the other coefficients have changed somewhat by comparison
with their values in Tables 3.5 and 3.6, as expected, given that the model has a slightly
different interpretation.

Since the lagged response and GLS models yield different conclusions regarding the
effect of nonmarine sulfate (at least, if the p-values are interpreted literally at the 5 %
level), it is quite important to try and distinguish between the two. This is not possible on
the basis of residual plots, which look almost identical for the two models. Furthermore,
formal comparison of the models is not possible at present since the first observation could
not be used when fitting the lagged response model. The simplest solution is to refit the
GLS model without the first observation and to compare the lagged response model to the
refitted GLS. Since the models are not nested, we use AIC for the comparison: the lagged
response and revised GLS fits yield AIC values of 297.06 and 297.01 respectively. The
difference is really too small to be helpful; furthermore, the same number of parameters
have been estimated in both models, so no other formal comparison measure will enable
us to discriminate between them.

From a scientific point of view, the outcome here is perhaps rather unsatisfactory: the
two models fit equally well and, if interpreted literally, lead to conflicting conclusions
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Figure 3.4 Residual plots for the alkalinity model in Table 3.6: (a) residual series,
with lowess smooths for this series and for the baseline model residuals, (b) residual
distributions by quarter, (c) residual autocorrelation function.

Table 3.7 Edited R output for the model including lagged alkalinity in addition to the
covariates in Table 3.5.

Estimate Std. Error t value Pr(›|t|)
(Intercept) -9.34532 1.42554 -6.556 3.24e-08 ***

Qtemp 3.31265 0.89050 3.720 0.000513 ***

Mtemp -0.86690 0.99508 -0.871 0.387900

Mrain -0.04638 0.48276 -0.096 0.923855

xSO4 -0.97832 0.45522 -2.149 0.036592 *

Cl -0.98323 0.43482 -2.261 0.028219 *

Lag1 0.25919 0.12184 2.127 0.038448 *

Mtemp:Mrain -1.63096 0.53317 -3.059 0.003595 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1

Residual standard error: 3.018 on 49 degrees of freedom

Multiple R-Squared: 0.6099, Adjusted R-squared: 0.5542

F-statistic: 10.95 on 7 and 49 DF, p-value: 3.158e-08
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regarding the relationship between alkalinity and nonmarine sulfate. We have, however,
learned that seasonal variations in alkalinity may be attributed to temperature and rain-
fall, and that marine deposition plays an important role. The lagged response model
suggests that the nonmarine sulfate effect is comparable with that of marine deposition
(since the xSO4 and Cl coefficients are almost equal and all covariates were normalised
prior to analysis); the GLS fit suggests that marine deposition events are rather more
important, and indeed that the effect of nonmarine sulfate may be insignificant at this
location. Ultimately, more data are required to discriminate between these two scenarios.
As well as continuing monitoring to extend the length of the existing time series, it would
be worth considering other covariates that may explain the remaining residual trend in
both models. One possible candidate is nitrate, the concentration of which depends on
complex catchment processes and which can contribute to the acidity of upland waters
(Alliot et al ., 1995). �

3.4 Nonlinear trends

In the linear trend and multiple regression models of the previous sections, we assumed
that any trends in the data could either be explained by dependence on covariates or
considered as linear or polynomial functions of the time index t . Obviously, although
these models are all linear (see the definition in the beginning of this chapter), the trends
are not. There are, moreover, other types of trend that cannot be represented using linear
models. For example, when a species colonises a new habitat the population growth is
typically slow at first, then increases rapidly and finally slows down to a more or less
stable level as the capacity of the habitat is reached. The resulting S-shaped curve is often
described as sigmoid(al). Consideration of the simplified dynamics of such a situation can
suggest particular parametric forms for the trend; for example, if the birth and death rates
in a population are linearly dependent on the population size, then the logistic model in
Table 3.1 is obtained (Haddon, 2001, Section 2.4). This is a nonlinear model since the
parameters enter nonlinearly into the trend function: for all such models, the corresponding
trend is also nonlinear. In this section we first consider a general approach to the fitting
of nonlinear models and then discuss some specialised techniques for use with individual
trend functions.

3.4.1 Nonlinear least squares

In principle, nonlinear models can be fitted using least squares in the same way as linear
models providing the usual assumptions hold. The underlying theory is essentially the
same as for linear models, except that in the nonlinear case the results are based on
large-sample approximations. Standard errors, model comparisons and predictions can be
calculated and interpreted in the usual way. The main difficulty is that there is usually
no explicit solution for the parameter estimates in the nonlinear case. Minimising the
sum of squares must therefore be done numerically. This can be a difficult computational
task; however, a variety of reliable algorithms are now available. Some of these are
implemented in the nls function in R, which also provides approximate standard errors
for the parameter estimates, allows the comparison of nested models using anova and
handles prediction. The facilities available for nonlinear modelling in R are extensive and
powerful; for a full discussion with plenty of examples, see Venables and Ripley (1999,
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Chapter 8). Autocorrelation and heteroscedasticity can be accommodated via the use of
devices such as those discussed in Section 3.3, which enable a weighted or generalised
least squares problem to be transformed to one involving the minimisation of a simple
sum of squares.

In the environmental sciences, explicit parametric models for nonlinear trends tend to
be applicable only in rather specialised settings such as the population growth example
discussed above. Otherwise, it is usually difficult to justify the use of an explicit parame-
teric representation of a trend that is markedly nonlinear; such situations may be handled
better using the nonparametric methods of Chapter 4. We therefore do not discuss non-
linear least squares further here. For more extensive treatment, the reader is referred to
Bates and Watts (1998). An extensive discussion of growth curve models can be found
in Piegorsch and Bailer (2005, Section 2.4).

3.4.2 Cycles

Occasionally, it is of interest to investigate cyclical phenomena in environmental time
series. The most obvious example is seasonality, which has already been discussed in
Section 3.2. Although this could hardly be described as a trend according to the definition
in Section 1.1, the basic approach can be extended to any case where the trend is periodic
with known cycle length: build regression models including sine and cosine terms at the
corresponding frequency, together with harmonics as necessary.

Of course, except for the seasonal cycle, the frequency of any potential periodic struc-
ture is generally unknown and must be estimated. Consider the simple sinusoidal model

Yt = β0 + β1 cos
[
2π (t − τ) f

] + εt , (3.54)

in which f is the frequency of the trend, corresponding to a cycle length of 1/f time
units. In this model, f could be estimated using nonlinear least squares. However,
for regularly spaced observations an easier way is to use the periodogram , which is
essentially the line spectrum (see Section 2.3) of the data:

I (f ) = T
[
A(f )2 + B(f )2] (3.55)

where A(f ) = 1

T

T∑
t=1

Yt cos 2πf t and B(f ) = 1

T

T∑
t=1

Yt sin 2πf t.

Some authors scale the periodogram differently: for example, Chatfield (2003,
Section 7.3) multiplies by T/2π in place of T in (3.55) and Priestley (1981, Section 6.1)
multiplies by 2T . We use (3.55) for compatibility with the function spec.pgram in R,
although the default settings for this function must be changed in order to compute the
periodogram as presented here (specifically, the arguments taper=0, detrend=FALSE
and fast=FALSE are required).

The periodogram is usually evaluated at the Fourier frequencies {fp = p/T : p =
1, . . . , 	T/2
}. For these frequencies, it can alternatively be computed from the sample
autocorrelation function (Chatfield, 2003, Section 7.3) and vice versa: the periodogram
and the ACF contain equivalent information. It can be shown (Priestley, 1981, Section 3.1)
that if β1 �= 0 in model (3.54), the expected value of the periodogram in the neighbourhood
of frequency f is proportional to T , whereas for all other frequencies it is approximately
σ 2, the variance of the error process. If data are generated according to (3.54), a plot of



PARAMETRIC MODELLING – DETERMINISTIC TRENDS 107

the periodogram should therefore show a large peak close to the true frequency f . The
frequency corresponding to the largest periodogram ordinate can be taken as an estimate
of f . If desired, the estimate can be refined using techniques described in Priestley (1981,
pages 413–414); see also Hannan (1973) and Quinn (1996). If the underlying trend is
periodic but not sinusoidal, the Fourier representation discussed in Section 2.3 guarantees
that it can be represented as a sum of sinusoids at frequencies f, 2f, 3f, . . .. In this
case the periodogram would be expected to have additional peaks corresponding to the
harmonics of f .

To test for the existence of genuine cycles in the model (3.54), if the errors satisfy
the usual assumptions then a periodogram based test due to Fisher (1929) can be used.
The test statistic is given by

g = max
p

[
I

(
fp

)]
/

	T/2
∑
p=1

I
(
fp

)
,

and has a distribution that can be evaluated exactly under the null hypothesis H0 : β1 = 0.
For large T , the p-value for this test is approximately 	T/2
 exp(−g	T/2
), where 	T/2

denotes the integer part of T/2.

Example 3.9
In the haddock biomass example from Section 3.1, the residuals from the linear trend
model (3.4) showed an apparent cyclical structure. On the basis of the residual ACF in
Figure 3.1, a cycle length of around 12 years was suggested. A periodogram analysis
offers the potential to investigate this more formally.

Figure 3.5 shows the periodogram of the T = 38 residuals from the linear trend model.
There is a peak at the third frequency, corresponding to a cycle length of 38/3 = 12.7
years. The horizontal lines on the plot show the approximate critical values for Fisher’s
test at 5 % and 1 % levels. Although this test is not strictly applicable here because the
‘data’ are in fact residuals from a model, we saw in Section 3.1 that the structure induced
by fitting this model is relatively weak. The critical values therefore provide a reasonable
basis for judging the magnitude of the observed peak. Since this comfortably exceeds the
nominal 5 % critical value, we may be fairly confident in rejecting the null hypothesis.

This analysis appears to confirm the presence of a cycle in the residuals with a
period of around 12 years. However, closer inspection of Figure 3.5 reveals a problem.
Under model (3.54), the expected magnitude of the periodogram ordinates is the same at
all frequencies apart from those associated with the periodic structure; however, in this
example there is a clear tendency for the magnitudes to decrease with frequency. This
cannot be an artefact of fitting a linear trend to the original data, since the effect of this is
to remove structure at low, rather than high, frequencies (Section 2.3). It therefore appears
that a simple periodic function is not adequate to describe the residual structure of this
series. We will return to this example in Chapter 5. �

Although periodogram analysis can be useful for detecting genuine periodicities, its
capabilities are limited (at least in the form presented here). This is mainly because the test
for sinusoidal components is applicable only when the simple model (3.54) is potentially
appropriate. Modifications are possible in the presence of autocorrelation; see Priestley
(1981, Section 8.3) and references therein. For more complicated structures, for example
when there is dependence upon other covariates in addition to the cyclical structure
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Figure 3.5 Periodogram for residuals from the linear trend model fitted to haddock
biomass data. Horizontal lines indicate approximate critical values for Fisher’s test of
the maximum periodogram ordinate, at the levels specified.

or when these covariates modulate the amplitude or frequency of the oscillation, it will
generally be necessary to resort to nonlinear least squares. Carter and Kohn (1997) propose
an alternative procedure for identifying cycles in the presence of both autocorrelation and
polynomial trends: at a fundamental level their method is based on state space models
(see Section 5.5) for the sequence of periodogram ordinates.

3.4.3 Changepoints and interventions

In the statistical literature, a changepoint is defined as a point in time at which the
properties of a process change abruptly. This may involve a sudden shift in the mean,
the variance or in some other more subtle aspect such as the autocorrelation structure.
Changepoints may result from known events such as the damming of a river. They may
also reflect (possibly undocumented) changes in instrumentation or recording practice,
or in the location of a monitoring station: all of these features can give rise to apparent
trends that are associated with data artefacts rather than genuine changes in the system of
interest (see Yang et al ., 2006 for an example of this) and must therefore be accounted
for in any analysis. We note in passing that the word ‘changepoint’ has also been used
to mean a point at which a trend is markedly nonlinear (Fewster et al ., 2000); this is not
the sense discussed here.

We consider first the case when the time of a potential change is known. This may
arise when studying the response of a system to some known intervention , for example
the construction of a new sewage treatment works on a river: here, the potential change-
point would be the time at which the intervention was implemented. When the time
of a potential changepoint is known, it can be accommodated straightforwardly into a
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regression framework by defining a dummy covariate that takes the value zero before the
changepoint and one afterwards. The coefficient of this covariate in a fitted model is then
an estimate of the shift in the mean of the process. Changes in some other aspects can be
investigated using interaction terms. For example, a change in the autocorrelation struc-
ture can be modelled by including lagged values of the response variable in the model,
as discussed in Section 3.3, together with interactions between the lagged responses and
the changepoint indicator.

The discussion in the previous paragraph assumes that the effect of an intervention
is instantaneous and permanent. One could imagine situations in which this is not the
case; for example, an offshore oil spill will have an immediate impact on the surrounding
marine ecosystem but full or partial recovery will usually take place over time. It may be
possible to represent the effect of such interventions using a plausible parametric model,
which can be fitted using nonlinear least squares. In the oil spill example, if Yt denotes
the abundance of some affected species at time t , a natural model may be

Yt =
{

μ + εt , t ≤ τ,

μ + ζ + ξ exp [−λ(t − τ)] + εt , t > τ,

where (εt ) is a white noise sequence as usual. The unknown parameters in this model are
μ, the mean level before the intervention at time τ ; ζ , the long-term change in the mean
level; ξ , the additional instantaneous change at time τ ; and λ> 0, the rate of recovery
after the intervention.

Matters are much more complicated when the presence of a changepoint is suspected
but its location is unknown. In this case several statistical approaches are available to
test for the existence of one or more changepoints and to estimate their locations if
present. A simple procedure is a variant of the Mann–Kendall test discussed in Section 2.4
(Kundzewicz and Robson, 2004). However, it is subject to all of the caveats associated
with the use of such tests in general, and a model based approach is more consistent with
the spirit of modern statistics. Consider, for example, the mean-shift model with unknown
changepoint τ :

Yt =
{

μ + εt , t ≤ τ,

μ + ζ + εt , t > τ.
(3.56)

Here, μ and ζ represent the initial mean level and magnitude of the change, as before.
If the (εt ) form a white noise sequence and are, in addition, normally distributed then it
can be shown (Hinkley, 1970) that the maximum likelihood estimate of τ is obtained by
maximising the function Z(τ) = τ(T − τ)

(
Y≤τ − Y>τ

)2
/T , where Y≤τ and Y> τ denote

respectively the sample means of the observations before and after time τ . Moreover, the
function Z(τ) achieves its minimum value either at one of the observation times or at
time T/2. Therefore, to estimate the changepoint in model (3.56), all that is required is
to calculate the quantities Z(1), . . . , Z(T ) and Z(T/2), and to record the time at which
the maximum value is achieved.

Unfortunately, the estimation of τ is the only straightforward aspect of model (3.56).
The standard theory of statistical estimation breaks down for this and other changepoint
models when the time of change is unknown. For example, it is tempting to consider
testing for the existence of a changepoint in (3.56) by fitting models both with and with-
out a change, and using a standard F test to compare them. It can be shown that this
procedure is not valid: under the null hypothesis, the usual test statistic does not have
an F distribution. The reasons for this are very technical; see Hinkley (1970), who also
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derives approximate procedures for use in this situation. However, these procedures are
cumbersome to implement, and modern computer-intensive methods offer a more appeal-
ing alternative. Here we summarise one possible approach to testing for a changepoint
using the bootstrap (see Section 3.6). The approach is essentially that of Julious (2001),
who provides a clear introduction to the area. The procedure is as follows:

1. Fit a model without a changepoint; call this model 0.

2. Fit a model with a changepoint (model 1) and store its residuals.

3. Calculate the usual F statistic for comparing the two models.

4. Generate a new series by sampling T values, with replacement, from the residuals
calculated in step 2 and add these to the fitted values from model 0.

5. Fit models both with and without a changepoint to the new data set created in step
4; compute the F statistic for comparing these two models.

6. Repeat steps 4 and 5 a large number of times, each time storing the resulting F

statistic.

The idea here is that in step 4 we generate an artificial data set that satisfies the null
hypothesis of no changepoint and also has residuals with distribution ‘as close as possible’
to that for the observed data. The distribution of the F statistic under the null hypothesis
can therefore be approximated by the empirical distribution of the values computed in
step 5, and hence the null hypothesis will be rejected at level α if the F statistic from
the observations falls in the upper 100α % of this empirical distribution.

An alternative approach to the changepoint problem is to borrow ideas from the area
of industrial quality control, where detection of changepoints is required to ensure, for
example, that the quality of manufactured items does not fall below acceptable limits. In
this context, changes in the mean level of a process are often signalled using a cumulative
sum or cusum test. The idea is that in the absence of a changepoint, the cumulative sums

St =
t∑

j=1

(
Yt − Y

)
(t = 1, . . . , T )

all have expectation zero. To test for the existence of a changepoint, one can therefore
use the largest value of |St |; the estimate of the changepoint can be taken as the time at
which this largest value is obtained, although refinements are possible (Hinkley, 1971).
Once again, the distribution theory is rather complicated and bootstrap methods may
be appropriate. The implementation of the bootstrap here is exactly the same as that
described above, except that for each bootstrap sample we compute the cusum statistic
max |St | instead of the F statistic.

The cusum test just described is suitable for retrospective detection of changepoints
from a sequence of observations. In some applications, such as environmental monitoring,
online detection is more relevant, in order that appropriate action can if possible be taken
as soon as a change is detected. Indeed, online detection is much closer to the original
purpose of cusum schemes in industrial applications. A brief introduction to the idea, with
references, has been given in Section 2.4.

The literature on the changepoint problem is vast and often very technical, and we
can only hope to give a brief introduction here. For a useful and cautionary review
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of changepoint detection methods in environmental applications, see Jarušková (1997).
Another review, with an ecological focus, is given by Ficetola and Denoel (2009). Julious
(2001) and Muggeo (2003) consider the problem of fitting simple regression models
described by a set of piecewise linear sections (here the changepoints correspond to the
joins, where the slope of the regression relationship changes abruptly). The latter author
provides an R package segmented that is able to fit such models efficiently, although it is
not clear that the standard errors and model comparison statistics reported by this package
are correct since they rely on assumptions that do not hold in the changepoint estimation
problem: bootstrap procedures may be preferable. The breakdown of classical theory in
changepoint problems is widely underappreciated: see Lund and Reeves (2002), who also
propose procedures for the detection of multiple changepoints in a single series. Sequential
detection of multiple changepoints is also considered by Menne and Williams (2005) and
by Tomé and Miranda (2004). The latter authors consider detection of changes in the slope
of a linear trend, which amounts to fitting a piecewise linear trend function; they do not
consider formal techniques for assessing the number of changes, however. Inclán and Tiao
(1994) consider retrospective detection of changes in variance, using extensions of the
cusum scheme. Range charts can be used for online detection of changes in variability
(Manly, 2001, Chapter 5). Changepoint analysis in the presence of autocorrelation is
considered by Garisch and Groenewald (1999), who apply their techniques to river flow
data from the Nile. Finally, Fried and Imhoff (2004) develop an interesting method, based
on ideas similar to the cusum scheme, for online detection of a changepoint where an
autocorrelated process starts to drift away from a steady state.

3.5 Generalised linear models

So far in this chapter we have dealt exclusively with models based on the normal distri-
bution. We now consider an extended class of regression models in which this assumption
is relaxed. Generalised linear models (GLMs) have become a cornerstone of much sta-
tistical practice since their introduction by Nelder and Wedderburn (1972). The starting
point is to note that the multiple regression model (3.34) can be regarded as a model for
the distribution of Yt given the covariates at time t :

Yt ∼ N
(
μt , σ

2) , where μt = β0 +
p∑

i=1

βixit = ηt , say.

The generalisation is firstly to allow the conditional distribution to be non-normal and
secondly to allow a nonlinear relationship between the mean μt and the linear predictor ,
ηt . Thus, in a GLM, the equivalent of the multiple regression model is to say that each
observation is drawn from the same type of distribution (for example normal, Poisson or
gamma) and that, given xt = t , Yt has mean μt with

g (μt ) = β0 +
p∑

i=1

βixit = ηt (3.57)

for some monotonic function g(·) called the link function . The usual regression model is
thus a GLM with normal distributions and an identity link function: g(μt ) = μt . Other
commonly used GLMs include the loglinear Poisson model for count data and the logistic
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regression model for binary data. In the former, Yt is taken to have a Poisson distribution
with mean μt and a logarithmic link function is used:

log μt = ηt ⇔ μt = exp (ηt ) .

Logistic regression is used for binary-valued data, coded (without loss of generality) as 0
and 1. In this case, μt is just the probability that Yt takes the value 1, and a logistic link
function is used:

log

(
μt

1 − μt

)
= ηt ⇔ μt = [

1 + exp (−ηt )
]−1

. (3.58)

This should not be confused with the logistic growth model discussed in Section 3.4.
Both models involve the use of a logistic transform, but are otherwise unrelated.

In these examples, the means {μt } can always be recovered from the linear predictors
{ηt }, because the link function is monotonic. The use of a link function is superficially sim-
ilar to data transformation; the important distinction is that in a GLM the transformation
applies to the modelled means rather than to the data themselves.

In principle, any sufficiently ‘well-behaved’ distribution could be used within
this model structure. However, the distributions in GLMs are restricted to belong
to the exponential family , which includes many common distributions such as the
normal, Poisson, binomial,2 exponential and gamma. This restriction is made primarily
for mathematical and computational convenience, since the exponential family has
many appealing properties. Some of these are indicated below; for further details, see
McCullagh and Nelder (1989) or Dobson (2001). An important feature is that for any
distribution in the exponential family, the variance and mean are related: specifically, if
the mean is μ then the variance is

σ 2 = ψV (μ) , (3.59)

where V (·) is called the variance function of the distribution and ψ is a dispersion
parameter . The glm function in R has built-in facilities for modelling using several
different distributions; these, along with their variance functions, are given in Table 3.8.

Table 3.8 Means, variance functions and dispersion parameters for some common
distributions in the exponential family.

Distribution μ V (μ) ψ Comment

Normal (μ, σ 2) μ 1 σ 2 Constant variance
Binomial (n, p) p p(1 − p) n−1 –
Poisson (μ) μ μ 1 Variance equal to mean
Gamma (α, λ) α/λ μ2 1/α Constant coefficient of variation
Inverse Gaussian (μ, λ) μ μ3 λ−1 –

2 In basic statistics courses, the binomial distribution is usually introduced as a model for counts.
In the context of exponential families, however, it is mathematically more convenient to work with
the corresponding proportions, so the binomial is used as a distribution for data taking values between
0 and 1. Notice, for example, that in Table 3.8 the mean of the distribution is given as p rather than
the more familiar np.
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Most of these distributions will be familiar to readers, with the possible exception of
the inverse Gaussian: this arises when considering the time taken for a one-dimensional
Brownian motion (see Section 5.4) to reach a specified threshold. It has rarely been used
in environmental applications, with the exception of Freidlin and Pavlopoulos (1997),
who suggested on the basis of physical considerations that it could be appropriate for
modelling durations of rain events and the intervening dry periods.

Applications of GLMs in environmental trend analysis have so far been relatively
limited. A notable exception is the work of Frei and Schär (2001), who used logistic
regression to examine trends in numbers of extreme rainfall events. Loglinear Poisson
models have also been used to model trends in species abundance (see Fewster et al .,
2000, for a review), although in this type of application it is usually necessary to adopt
a nonparametric representation of the trend function. This can be achieved within the
framework of generalized additive models (GAMs), which are described in Chapter 4;
examples of their application include Fewster et al . (2000) and Freeman, Baillie and
Gregory (2001).

3.5.1 Parameter estimation

GLMs are usually fitted using the method of maximum likelihood, which was introduced
in Section 3.1.6. The parameters to be estimated are β, the vector of coefficients
in the linear predictor, along with the dispersion parameter ψ . Let ft (·; xt , β, ψ)

denote the probability density function of Yt (or probability mass function if Yt is
discrete), given the associated vector of covariates xt and parameters (β, ψ). Then, if
successive observations are independent, their joint density is

∏T
t=1 ft (yt ; xt ,β, ψ) and

the log-likelihood function is

� (β, ψ; y) =
T∑

t=1

log ft (yt ; xt ,β, ψ) . (3.60)

Maximising this expression yields the maximum likelihood estimators (MLEs) of β and ψ .
For the multiple regression model (3.34), the dispersion parameter is ψ = σ 2. The

results in Section 3.1.6 show that, for this model, the MLE of β is the same as the least
squares estimator and does not depend on the value of the dispersion parameter. This is
a feature of all GLMs and is due to the use of distributions in the exponential family.
Indeed, it can be shown (Dobson, 2001, Section 4.3; McCulloch, Searle and Neuhaus,
2008, Section 5.4) that in any GLM the maximum likelihood estimate of β satisfies an
equation of the form

[
X′WX

]
β̂ = X′Wz, (3.61)

where z is a T × 1 vector with typical element zt = ηt + (yt − μ̂t )g
′(μ̂t ) and W is a

diagonal matrix with typical element wtt = [V (μ̂t )g
′(μ̂t )

2]−1. As usual, μ̂t = g−1(β̂0 +∑p

i=1 β̂ixit ) is the fitted value at time t . Notice that (3.61) is almost identical to the
weighted least squares equation (3.44); superficially, the only difference is that the data
vector y has been replaced by a vector of adjusted dependent variates , z. However, in
(3.61) the elements of W depend on β̂, whereas in (3.44) they were known. This suggests
an iterative method of fitting: start with some plausible estimates of the fitted values {μ̂t },
solve (3.61) to obtain an estimate of β, recalculate the fitted values using this estimate and
continue until the estimate of β has stabilised. This iteratively (re)weighted least squares
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(IWLS) algorithm is used by most software packages to fit GLMs; the observations {yt }
themselves are usually used as estimates of the fitted values in the first step.

Having estimated the regression coefficients, we turn to the dispersion parameter
ψ . For some distributions, such as the Poisson (see Table 3.8), this is known; in other
cases it must be estimated. In principle, maximum likelihood could be used here as well.
Unfortunately, however, maximum likelihood estimators of dispersion parameters can be
biased in small samples and can be sensitive to, for example, rounding errors in small
observations (McCullagh and Nelder, 1989, Section 8.3). It is therefore usual to estimate
the dispersion parameter by a method of moments , equating the sample and theoretical
variance of suitably standardised residuals:

ψ̂ = 1

T − k

T∑
t=1

(yt − μ̂t )
2

V (μt )
.

In the normal linear model, this expression reduces to (3.21) since, in this case, ηt = μt

and V (μt ) = 1. The maximum likelihood estimator in this case has divisor T in place of
T − k (this was shown in Section 3.1.6 for the linear trend model).

Once the dispersion parameter has, if necessary, been estimated, the covariance
matrix of the estimated regression coefficients can be estimated as ψ̂

[
X′WX

]−1
. Tests

of hypotheses about individual coefficients can then be constructed just as for multiple
regression models. In this particular instance, the form of the covariance matrix follows
from the weighted least squares form of the estimates (see Section 3.3). However, it is
in fact a specific example of the more general result given in Section 3.1.6 that in large
samples the covariance matrix of the MLE is approximately equal to the inverse of the
expected information matrix J : it can be shown that J = X′WX/ψ for the regression
coefficients in a GLM. The approximate large-sample nature of the result is worth noting,
however, as with many other models that have been discussed so far, the approximations
are often very accurate, but are usually justified on the basis of assumptions that do not
always hold in a trend analysis. Fortunately, alternative justifications are available in many
situations of practical interest. We conclude this section with a brief outline of the issues
involved.

The usual derivation of the large-sample approximation for an MLE (see, for example,
Davison, 2003, Section 4.4 and Cox, 2006, Chapter 6) requires, among other things,
that in a neighbourhood of the true parameter value the expected information matrix
converges to a constant positive definite matrix upon suitable normalisation, usually after
dividing by T . In a GLM, the (i, j)th element of the expected information X′WX/ψ

is
∑T

t=1 wttxtixtj /ψ . If one of the covariates is the time index t , and others represent
nontrending environmental variables, different elements of the information matrix may
have different orders of magnitude (see, for example, Example 3.4 on the linear model,
where the information matrix is proportional to X′X). In this case no simple normalisation
will yield the required convergence. A resolution to the problem can be found in the results
of Sweeting (1980), who provides much more general conditions under which the usual
large-sample approximations can be justified.3 These conditions usually hold when some
covariates are functions of the time index, providing the expected information increases
without bound as more data are collected. This justifies the use of standard likelihood
based procedures in many trend analyses. There are, however, known situations in which

3 There is a typographical error in Sweeting (1980): at the bottom of page 1379, his condition
Var{It (θ)} →u 0 should read Var{At (θ)−1It (θ)At (θ)−1} →u 0.
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the standard theory does not apply, even in the case of the multiple regression model
where no approximations are usually involved. These situations, which are sometimes
referred to as spurious regressions , are discussed further in Chapter 5.

3.5.2 Model comparison

In Section 3.2, we saw that sequences of nested linear models could be compared using
F tests based on their residual sums of squares. A similar idea can be applied when using
GLMs in large enough samples. The starting point is to note, from (3.32), the connection
between the log-likelihood and the residual sum of squares in the multiple regression
model. In a GLM, the role of the residual sum of squares is taken by the deviance,
defined as

D = 2ψ
[
�FULL (y) − � (β, ψ; y)

]
, (3.62)

where �FULL (y) is the log-likelihood for a model that fits the data perfectly, i.e. in which
μt = yt . Like the sum of squares (to which it corresponds in the case of the multiple
regression model), D is always non-negative and smaller values correspond to better-
fitting models. When the dispersion parameter ψ is unknown, F tests can be used to
compare nested models in exactly the same way as for the multiple regression case; all
that is required is to substitute deviances for sums of squares in (3.41). The procedure is
referred to as analysis of deviance, but is implemented in R via the anova command.

In general, the use of F tests to compare models is necessary to account for an
unknown dispersion parameter (Krzanowski, 1998, Section 5.5). In some GLMs, however,
the dispersion parameter has a known value – for example, from Table 3.8, the dispersion
parameters for the binomial and Poisson distributions are 1/n and 1 respectively. In such
situations, suppose we wish to compare two models M0 and M1, say, where M1 is
obtained by adding m extra terms to the linear predictor for M0. A test of the null
hypothesis that the data were generated from M0 can be carried out by comparing the
scaled deviances for the two models. The scaled deviance is defined as

D(s) = D/ψ = 2
[
�FULL (y) − � (β, ψ; y)

]
. (3.63)

Under the null hypothesis, the difference in scaled deviances, D
(s)
0 − D

(s)
1 , say, has

approximately a chi-squared distribution with m degrees of freedom (Davison, 2003,
Section 10.2.1). The anova command in R can be used once again. Notice from (3.63)
that the difference D

(s)
0 − D

(s)
1 can equivalently be written as

2 (�1 − �0) , (3.64)

where �0 and �1 are the maximised log-likelihoods for the respective models. In this
form, the difference in scaled deviances is often called the (log-)likelihood ratio statistic.
In fact, its use is not restricted to GLMs: in large samples, its null distribution remains
approximately χ2

m when comparing nested models fitted by maximum likelihood in a very
wide range of situations.

For the comparison of non-nested models, methods such as the AIC can be used for
GLMs in the same way as for multiple regression models. Model comparisons made using
AIC or related criteria are effectively comparisons of log-likelihoods (recall the definition
of AIC in Section 3.2.3); hence there is an operational connection with tests based on
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the likelihood ratio statistic, even though the arguments underlying the procedures are
rather different. In principle, criteria such as AIC can also be used to compare models
involving different classes of distribution (for example to determine whether a normal or
gamma distribution fits the data better). However, when computing log-likelihoods (and
hence AIC values), some software packages may omit constant terms that are irrelevant
when comparing models involving the same class of distributions. For models involving
different classes, the inclusion of such terms is critical. In such situations, therefore, to
be on the safe side it may be worth computing the required log-likelihoods explicitly, by
summing the respective log densities.

3.5.3 Model checking

As in the normal linear model, most diagnostics for GLMs are based around residual
plots, together with the analogues of influence measures such as the leverage and Cook’s
distance. The main differences are that the concept of a residual is not uniquely defined
in a GLM and that residual plots can be uninformative for highly discrete data. For most
models, the raw residuals {Yt − μt } are of limited value since (for example) they all have
different variances. A natural solution is to standardise each raw residual to have the
same variance under the model. This is the idea behind Pearson residuals . The Pearson
residual at time t is defined as

r
(P)
t = Yt − μ̂t√

V (μ̂t )
.

If the fitted model is correct, the Pearson residuals should appear uncorrelated, with zero
mean and constant variance. Plots such as those in Section 3.1.1 can often be used to
provide an informal assessment of this.

An alternative class of residuals for GLMs is based on the analogy between the
deviance and the residual sum of squares. From (3.60) and (3.62), it is clear that the
deviance is a sum of terms; furthermore, it can be shown that these terms are all non-
negative. The deviance residuals are obtained by taking the square root of each term
and attaching a plus or minus sign as appropriate, depending on whether the observation
is greater or smaller than the fitted value (McCullagh and Nelder, 1989, Section 2.4.3).
Thus the sum of squared deviance residuals is just the deviance. The idea is arguably
somewhat artificial and deviance residuals are perhaps less easily interpreted than Pearson
residuals; however, for diagnostic purposes they can be used in exactly the same way.
For an overview of different types of residual for GLMs, see Piegorsch and Bailer (2005,
Section 3.2.3) and references therein, notably Jørgensen (2002). In R, the plot.glm

command produces a variety of diagnostics based on deviance residuals.
If the data are highly discrete, residual plots can be difficult to interpret. With binary-

valued data, for example, residual plots appear as two curves, corresponding respectively
to the zeros and ones in the data. In this case it may be more helpful to construct residuals
based on aggregated data. Suppose, for example, that logistic regression has been used
to model the monthly sightings of a species over a period of several years and that the
analyst wants to check that the residuals do not show any trend. Let pmy be the modelled
probability of a sighting in month m of year y and let Ymy be the corresponding 0/1 obser-
vation. Then, rather than studying individual residuals, one could aggregate to an annual
timescale. Under the model, the expected number of months with sightings in year y is

E
12∑

m=1

Ymy =
12∑

m=1

pmy
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and the variance of this sum is
12∑

m=1

pmy(1 − pmy).

The quantities ∑12
m=1

(
Ymy − pmy

)
√∑12

m=1 pmy(1 − pmy)

therefore have mean zero and variance 1 under the model; a time series plot of these
quantities may be easier to interpret than a plot of individual monthly residuals. For more
discussion of the construction and interpretation of diagnostics in models for binary data,
see Cox and Snell (1989, Section 2.7).

3.5.4 Prediction with GLMs

Extrapolation using a GLM is similar to that for a multiple regression model
(Section 3.1.4). Given an estimated parameter vector β̂ and a vector xT +� of covariates
at future time point T + �, the corresponding linear predictor can be estimated as
η̂T +� = x′

T +�β̂. With known dispersion parameter ψ , an approximate 95 % confidence
interval for this linear predictor is

η̂T +� ± 1.96ψ

√
xT +�

(
X′WX

)−1 x′
T +�.

The estimate η̂T +�, together with the endpoints of the confidence interval, can then be
transformed back to the scale of the original observations to obtain an approximate 95 %
confidence interval for the underlying mean at time T + �. Usually this interval will not
be symmetric; this is due to the nonlinear relationship between the linear predictor ηT +�

and the mean μT +�.
The construction of prediction (rather than confidence) intervals is more difficult for

GLMs than for multiple regression models, however. This is because when YT +� is pre-
dicted using μ̂T +�, the two sources of error μ̂T +� − μT +� and YT +� − μT +� have different
types of distribution; the former is approximately normal whereas the latter depends on
the model. In general, it is difficult to derive useful expressions for the quantiles of a
sum of normal and non-normal variables (in the multiple regression case, both sources
of error have normal distributions and so their sum is also normal). For this reason, the
predict.glm function in R produces extrapolations of the linear predictor together with
associated standard errors, but does not attempt to produce prediction intervals. If such
intervals are desired, a crude approach is simply to proceed as though there is no estima-
tion error and to calculate the appropriate quantiles of the chosen family of distributions
with mean μ̂T +� and dispersion ψ̂ . If the standard error of η̂T +� is small relative to the
standard deviation of YT +� (or if YT +� is highly discrete so that prediction intervals have
limited interpretability in any case), this may be perfectly adequate. Failing this, other
methods must be used. As with the changepoint problem discussed in Section 3.4, boot-
strap methods offer one solution. A simple bootstrap algorithm for obtaining prediction
intervals is as follows:

1. Generate a new sample Y ∗
1 , . . . , Y ∗

T by simulating random numbers from the appro-
priate family of distributions, with respective means μ̂1, . . . , μ̂T and dispersion
parameter ψ̂ .
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2. Refit the model to the new sample and use the parameter estimates from this
refitted model to construct an estimate of the underlying mean at time T + �; call
this estimate μ̂∗

T +�.

3. Simulate a large number (M , say) of observations from the chosen family of
distributions, with mean μ̂∗

T +� and dispersion parameter ψ̂ .

4. Repeat steps 1 to 3 N times, where N is another large number.

The result of this algorithm is a set of NM simulated observations, from which an empiri-
cal distribution can be constructed. Prediction intervals can be taken from the appropriate
percentiles of this distribution. Like the bootstrap algorithm for the changepoint problem,
the method works by generating artificial data sets with (hopefully) similar structure to
the observations. Uncertainty in the estimation of the model parameters is accounted for
by refitting the model repeatedly to N different artificial data sets, whereas the additional
random error at time T + � is accounted for by generating M realised values of YT +� for
each fitted model. Notice, however, that the success of the method depends on the artifical
data being ‘sufficiently similar’ to the original observations. If this is not the case, a more
sophisticated algorithm such as that described in Davison and Hinkley (1997, Section 7.2)
may be required.

3.5.5 Extensions and refinements

We conclude this discussion of GLMs by considering some extended features that are
often useful. The first follows from the observation that, according to Equation (3.61),
the parameter estimates in a GLM depend on the underlying distribution only through
the variance function V (μ), which enters via the weight matrix W . This suggests that the
precise form of the distribution is relatively unimportant and hence that in any situation
where the variance appears related to the mean, models could be fitted as if the data
were generated from the corresponding exponential family distribution. The idea is due
to Wedderburn (1974), who coined the term quasi-likelihood to describe it. The procedure
delivers valid estimators, and confidence intervals and hypothesis tests for the regression
coefficients can be interpreted in the usual way. Depending on the variance function
used, quasi-deviances can also be constructed for comparing nested models; however,
these are not always uniquely defined (Davison, 2003, Section 10.6). Models fitted using
quasi-likelihood can also be used to extrapolate the underlying mean of a process into
the future, as described in the previous subsection; however, it is of course not possible
even in principle to calculate prediction intervals without being more specific about the
form of the distribution.

In Section 3.3, we identified four categories of heteroscedasticity in multiple regression
models. The second of these involved a direct relationship between the variance and the
mean; clearly quasi-likelihood offers a way of dealing with this, as an alternative to data
transformation. The glm command in R is able to fit models using quasi-likelihood, and
offers the facility for the user to define their own variance functions if the inbuilt ones
are not adequate.

The only form of heteroscedasticity that has not yet been addressed is that in which
the variance of Yt appears systematically related to other factors. GLMs can also be used
to accommodate this (McCullagh and Nelder, 1989, Section 10.2), by writing the multiple
regression model (3.34) as

Yt = μt + εt = μt + σtZt , say,
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where Zt is a standard normal random variable and σt depends on covariates. Noting that
Z2

t has a chi-squared distribution on one degree of freedom, which is the same as a gamma
distribution with both parameters equal to 1/2 (Rice, 2006, Section 2.3), we deduce that
Ut = σ 2

t Z2
t is distributed as �

(
1/2, 1/2σ 2

t

)
. This gamma distribution is in the exponential

family (see Table 3.8) and has the expected value σ 2
t . Given the sequence {Ut }, we could

therefore fit a gamma GLM relating some function of σ 2
t to the underlying covariates

(call this the ‘variance model’); the fitted values would then estimate the variances of
the individual observations. The regression coefficients for the means {μt } (the ‘mean
model’) could then be estimated via weighted least squares, using the estimated variances
to construct the weights. In practice, of course, we cannot observe {Ut }, so we use the
residuals from an ordinary least squares fit of the mean model as preliminary estimates.
After refitting using weighted least squares, these residuals will obviously change, whence
it is necessary to refit the variance model. Model fitting therefore alternates between
weighted least squares fits of the mean model and gamma GLM fits of the variance
component, until convergence is achieved. This procedure has been applied to monthly
temperature time series by Chandler (2005) and to daily and weekly series of potential
evapotranspiration by Yang et al . (2005).

As with multiple regression models, autocorrelation in GLMs can be handled either
directly (by analogy with generalised least squares) or by including lagged values of
the response variable as covariates in the model. The generalised estimating equation
(GEE) framework of Liang and Zeger (1986) provides the analogue of generalised least
squares; short introductions can be found in Dobson (2001, Section 11.4) and McCulloch,
Searle and Neuhaus (2008, Section 9.3). Most applications of GEEs have been to clinical
trials in which repeated measurements are made on each of a sample of patients; in
these applications, measurements from the same patient tend to be correlated but those
from different patients are usually independent. This data structure is implicit in much
of the GEE literature; specifically, it is common to refer to independent ‘clusters’ of
measurements. In the current context, when analysing a single time series we effectively
have just one cluster, but the methodology can still be used providing the sample size is
large enough relative to the strength of the autocorrelation. GEEs can be fitted in R using
the geepack library (Yan, 2002).

When fitting models using maximum likelihood, the justification for dealing with auto-
correlation by including lagged responses is that in the presence of dependence between
successive observations, the joint density of the observations can always be written as a
product of conditional densities:

T∏
t=1

ft (yt |y1, . . . , yt−1; xt , β, ψ) , say.

This result follows from the definition of a conditional density; see Rice (2006,
Section 3.5) for example. The log-likelihood for β and ψ can therefore be written as a
sum of terms, each conditioned on all previous observations:

� (β, ψ; y) =
T∑

t=1

log ft (yt |y1, . . . , yt−1; xt , β, ψ) . (3.65)

Compare this with the independence case (3.60). The conditioning can usually be achieved
by incorporating a few previous values into the linear predictor; often, including just
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Yt−1 will be enough to remove most of the residual autocorrelation. Consideration of
measurement units suggests that previous values should be transformed to the same scale
as the linear predictor where possible: our experience is that this usually brings substantial
benefits in terms of model fit. For example, in a loglinear model, since the linear predictor
is ηt = log μt , log Yt−1 is a more natural covariate than Yt−1. Of course, if some of the
observations are zero this cannot be done; in this case, an alternative such as log(1 + Yt−1)

may be considered. For more details of this approach to handling autocorrelation in GLMs,
see Chapter 8.

3.6 Inference with small samples

With the exception of the standard multiple regression model, the methods introduced
in this chapter are justified on the basis of large-sample approximations. When these
approximations are not sufficiently accurate, computer-intensive methods often provide
a feasible alternative. One of the most popular modern techniques is the bootstrap. This
has already been introduced in Sections 3.4 and 3.5 and is in fact a collection of related
techniques, all of which involve the use of artifical data sets generated in such a way as to
resemble the observations with respect to carefully chosen features. These artificial data
sets all involve resampling from the observed data, or from models fitted to the observed
data: the name ‘bootstrap’ derives from the phrase ‘to pull oneself up by one’s bootstrap’
(Efron and Tibshirani, 1993, page 5). Hypothesis tests, confidence intervals and prediction
can all be handled within the bootstrap framework. We give only a brief overview of the
main ideas here; in particular, we do not discuss the construction of bootstrap confidence
intervals. More details can be found in Efron and Tibshirani (1993) and Davison and
Hinkley (1997). The latter authors give a very clear and readable account, supported in
R by the boot library (Canty and Ripley, 2008).

The most easily implemented of the bootstrap techniques is the parametric or model
based bootstrap, in which artificial data sets are generated from the fitted model itself.
The bootstrap prediction algorithm for GLMs in Section 3.5 is an example. Hypothesis
testing can also be performed using the parametric bootstrap, as follows:

1. Calculate a statistic for testing the null hypothesis in the observed data. This may
be, for example, a t statistic for a coefficient in a regression model or an F statistic
for comparing nested models.

2. Fit a model corresponding to the null hypothesis of interest (for example a regres-
sion model or GLM in which a particular covariate is omitted), if this has not
already been done in step 1.

3. Use the fitted model from step 2 to generate a large number, N say, of artificial
data sets satisfying the null hypothesis. For each of these data sets, calculate the
same test statistic as in step 1. The result will be a collection of N test statistics,
each obtained under the null hypothesis.

4. Compare the observed value of the test statistic with the quantiles of the distribution
obtained from the N values in step 3, to obtain a p-value for testing the null
hypothesis.

Strictly speaking, the p-value obtained in step 4 above is an estimate of the actual
p-value for the test. In practice it is just the proportion of the bootstrap samples yielding
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a test statistic that is more extreme (in a sense determined by the precise testing situation)
than that observed. The standard error of this proportion is

√
p(1 − p)/N , where p

is the actual p-value. This can be used to determine an appropriate value for N . For
example, choosing N = 10 000 will deliver a standard error of

√
p(1 − p)/100 so that

the estimate can be considered accurate to two decimal places; this should be adequate for
most applications.

The bootstrap test procedure assumes that any significant differences between the
observations and artificial data sets are due to violation of the null hypothesis in the
observations. This is a strong assumption, which can only be made if the model provides
an adequate representation of the data; for example, if the residuals from a multiple
regression model are not normally distributed, the artifical data sets generated in step 3 will
not resemble the original data. Further, autocorrelation is always a potential difficulty in
any trend analysis; artificial data sets must be generated so as to reproduce realistically any
autocorrelation in the observations. For multiple regression models, this can be achieved
either by generating autocorrelated error sequences from a model such as the AR(1) (see
Section 3.3.3), or by including previous Y values in the regression model and generating
artificial data sets sequentially, at each stage conditioning on the values already generated.
For GLMs, the notion of an error sequence is less well defined and the latter approach is
easier to implement.

In cases where the parametric bootstrap is inappropriate, perhaps because of concerns
over the distributional assumptions of the model, a nonparametric bootstrap may be used
instead. The main difference between parametric and nonparametric bootstraps is the way
in which the artificial data sets are generated. For regression models, the nonparametric
version works by sampling artificial error sequences and adding these to the ‘structural’
part of a fitted model (i.e. the estimated means μ̂1, . . . , μ̂T ). The error sequences are
sampled from the model residuals (possibly standardised as defined by Equation (3.27)
in Section 3.1.3), with replacement; the procedure is ‘nonparametric’ in that no explicit
form is assumed for the error distribution. The bootstrap approach to changepoint testing
in Section 3.4 is an example. The justification for the procedure is essentially that if one is
not prepared to make any assumptions about the distribution from which the residuals are
drawn, the best estimate of this distribution is that of the residuals themselves. The idea
is, however, difficult to apply to GLMs, again because of the difficulty in defining useful
residuals; see Davison and Hinkley (1997, Section 7.2) for some possible approaches.

Autocorrelated residuals are also difficult to handle within the nonparametric bootstrap
framework. One possible option is to generate new error sequences by sampling blocks of
successive residuals, rather than sampling one at a time. The result is the block bootstrap.
Some care is required with the use of such techniques, however. We do not discuss them
further here; for a thorough discussion of bootstrap methods for time series data, see
Davison and Hinkley (1997, Section 8.2). Of course, in models where autocorrelation is
handled by including lagged Y values as covariates, there is no problem since the residuals
from such models should be uncorrelated in any case.

The bootstrap is not the only way to proceed when standard approximations break
down. An alternative procedure, at least for hypothesis testing, is based on randomly
reordering one or more components of the data so as to generate artifical data sets in which
the null hypothesis is known to hold because any relationship among the components has
been broken by the random reordering. As with the bootstrap, any test statistic computed
from the observations can then be compared with the distribution of test statistics from
the artificial data sets. A brief but clear overview of such permutation tests can be found
in Faraway (2005, Section 3.3).
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4

Nonparametric trend
estimation

The previous chapter introduced the idea of a statistical model for trend and explored a
variety of parametric techniques for estimation and testing. These techniques were all
based on an assumption that the underlying trend had a specified mathematical form:
for example that it was linear or that it depended linearly on covariates. However, such
assumptions are not always appropriate. In this chapter, therefore, we describe some
simple nonparametric techniques, incorporating the main features of environmental
time series including seasonality, cycles, trends and relationships with other measured
environmental variables. The key feature of these techniques is that the modelled trends
and relationships are determined from the data themselves, rather than being forced to
conform to a prespecified mathematical structure. This does not mean, however, that the
techniques are completely assumption-free. There are a number of key texts introducing
this modelling framework including Hastie and Tibshirani (1990), Simonoff (1996),
Bowman and Azzalini (1997) and Wood (2006).

4.1 An introduction to nonparametric regression

We have seen that most model-based approaches to trend analysis can be regarded as
some form of regression, in which the covariates may include the time index along
with other variables that are thought to influence changes in the quantity of interest.
The development in the previous chapter started with the linear model (3.3) in which
the response was considered to depend linearly upon a single covariate. To remove the
linearity assumption, and hence to allow greater flexibility where necessary, one could
consider the following alternative version of equation (3.3):

Yt = m (xt ) + εt (t = 1, . . . , T ), (4.1)

where (εt ) is a white noise sequence with variance σ 2 as usual, but now the parametric
trend function β0 + β1xt has been replaced by an arbitrary function m (xt ) whose
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mathematical form is not specified. Equation (4.1) defines a nonparametric regression
model with independent errors.

In practice, one probably would not want the regression function m(·) in (4.1) to be
completely arbitrary. In particular, it will often be reasonable to assume that it is smooth
so that small changes in x lead to small changes in m (x), and hence are associated with
small changes in Y on average. Thus, many nonparametric regression techniques are based
on some form of smoothing. In the context of a trend analysis in which xt is just the
time index t , we have already encountered the use of smoothing as a tool for exploratory
analysis, in Section 2.2. Here we develop the idea further. By working within a model
based framework, however, we are no longer merely describing the apparent structure in
a scatterplot of Y against x: instead, we are explicitly estimating the dependence of the
expected value of Y upon x.

4.1.1 Linear smoothing

We start by considering techniques for which the estimated regression function m̂(·) is
obtained via linear transformations of the data y1, . . . , yT . Specifically, let y denote the
vector of observations as usual and denote by m a vector containing the values of the
regression function at a specified set of covariate values x. Then the methods considered
in this section are such that the estimate of m can be written as

m̂ = Sy, (4.2)

where S is a smoothing matrix . By way of justification for this, consider once again the
simple moving averages examined in Section 2.2:

ỹt =
k∑

j=−k

wjyt+j .

In their simplest form, we saw that such moving averages could be used to calculate
a smoothed series ỹk+1, ỹk+2, . . . , ỹT −k . In matrix–vector notation, this smoothed series
can be written as

⎛
⎜⎜⎜⎜⎝

ỹk+1

ỹk+2

...

ỹT −k

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

w−k w1−k · · · wk 0 · · · 0

0 w−k · · · wk−1 wk · · · 0

...
...

. . .
. . .

. . .
. . .

...

0 0 · · · w−k · · · wk−1 wk

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

y1

y2

...

yT −1

yT

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Equation (4.2) has exactly the same form as this, and hence can be seen as a direct exten-
sion of the moving average principle. Indeed, smoothers generally perform local averaging
by averaging the observations within the neighbourhood of each point of interest.

Notice that if x is equal to the observed vector of covariate values, Equation (4.2)
defines the fitted values of the regression function for each of the observations. Denote
the corresponding smoothing matrix by S̃: this has dimensions T × T and is the direct
analogue of the hat matrix defined in Section 3.1.3 in the context of parametric regression
models.
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4.1.2 Local linear regression

To carry out smoothing in practice, it is necessary to specify a means of generating the
smoothing matrix S. There are two main decisions to be made:

• How to average the response values in each neighbourhood, i.e. the type of
smoothing to perform.

• What size of neighbourhood is required. The size of the neighbourhood is typically
expressed in terms of a smoothing parameter , sometimes referred to as a bandwidth .

Many types of smoothing are available, including those based on kernel methods, local
polynomial fitting and regression splines; see, for example, Bowman and Azzalini (1997),
Hastie and Tibshirani (1990), Simonoff (1996). Kernel methods are the equivalent, in a
regression framework, of the moving averages considered in Section 2.2; local polynomial
fitting was also introduced there as a means of visualising trend. Although these smoothing
methods are all different, the end results, in terms of estimation, are often similar. We
start by discussing the local linear smoothing method, first proposed in this context by
Cleveland (1979).

Local linear smoothing is computationally straightforward to implement (in R, routines
are provided in the sm library of Bowman and Azzalini, 2007) and to modify, and has
a number of attractive properties. Figure 2.6 provides a graphical representation of the
procedure, in the case when the covariate is the time index: xt = t . For a particular
covariate value x, the first step is to carry out a weighted least squares linear regression
of the response variable upon xt − x:

min
α,β

T∑
t=1

{yt − [αx + βx (xt − x)]}2 w (xt − x; h) , (4.3)

where w(·;h) is a kernel weight function , chosen to ensure that observations close to
x have the greatest contribution to the weighted sum of squares and hence that the
estimated regression line, say α̂x + β̂x (xt − x), can be regarded as an approximation to
the true relationship in the neighbourhood of the value x of interest. The quantity h is a
smoothing parameter, controlling the ‘width’ of the kernel function, i.e. the speed with
which it decays and hence downweights observations with covariate values very different
from x. For example, one might choose to use a Gaussian density centred on zero and
with standard deviation h:

w (xt − x;h) ∝ exp

[
− (xt − x)2

2h2

]
.

Wider kernels lead to more smoothing, just as with the simple moving averages in
Section 2.2.

According to the fitted local regression line, when xt = x the expected response is α̂x .
This is taken as the estimate of m(x). The whole procedure is then repeated for a range
of different values of x, to build up an estimate of the complete underlying regression
function.

Notice from Equation (3.44) that α̂x is a linear function of the observations {yt };
thus we can write α̂ = sxy, say, where sx is some row vector (the elements of sx can
be calculated explicitly; see Bowman and Azzalini, 1997, page 50). The local nature of



130 METHODOLOGY

the regression ensures that sx allocates most weight to those elements of y with covariate
values close to x. In the context of Equation (4.2), sx gives the row of the smoothing
matrix S corresponding to the covariate value x. Simultaneous estimation of the regression
function at a collection of values of x can therefore be carried out easily by assembling
S from its constituent rows, and then using (4.2).

Fan and Gijbels (1992) and Fan (1993) show the excellent theoretical properties of the
local linear estimator. In particular, its behaviour near the ends of the range of x values is
superior to the simpler local mean or Nadaraya–Watson estimator in which, rather than
fitting regression lines, one simply calculates a kernel-weighted average of the observa-
tions at each covariate value of interest. Fan and Gijbels (1992) also consider the idea of
varying the bandwidth in local linear smoothers, since there may be situations where a
constant bandwidth is not flexible enough for estimating curves with a complicated shape.

An attractive feature of local linear smoothers is that as the smoothing parameter
becomes very large, the kernel function becomes essentially flat over the range of the data
so that the weights w (xt − x;h) attached to each observation in (4.3) become effectively
equal. In this case, the estimate m̂(x) is merely the fit of the least squares regression line
at x. Hence ordinary least squares regression can be regarded as a special case of local
linear smoothing.

4.1.3 Spline smoothing

The idea behind local regression is intuitive and appealing. However, it is not the only way
of constructing linear smoothers. An alternative is to build an estimate of the unknown
regression function from a collection, or basis , of simpler functions. In fact we have
seen an example already, in Section 2.3, where we used the fact that any sequence can
be represented using a collection of sine and cosine functions: this collection is usually
referred to as the Fourier basis for the sequence. Here, we introduce some alternative
bases that emerge naturally from considerations of smoothness.

Suppose initially that we are prepared to make no assumptions whatsoever about the
regression function m(·), but that we want to estimate it from data y1, . . . , yT by least
squares. Thus we wish to minimise

T∑
t=1

[
yt − m (xt )

]2
.

The minimum attainable value of this expression is zero, and is attained by any function
m(·) that interpolates the observations (i.e. satisfies m(xt ) = yt for t = 1, . . . , T ). This
clearly does not help to estimate the regression function.

The assumption of smoothness provides a way out of the problem. Smoothness implies
that the second derivative m′′(·) of the regression function is ‘small’, since large values of
the second derivative imply that the regression function has high curvature and therefore
tends to be (in the terminology of Wood, 2006) ‘wiggly’. An overall measure of the (lack
of) smoothness of m(·) over the interval (a, b) is therefore∫ b

a

[
m′′(x)

]2
dx.

Thus, rather than minimising the sum of squares we might choose to minimise a penalised
sum of squares

T∑
t=1

[
yt − m (xt )

]2 + λ

∫
R

[
m′′(x)

]2
dx, (4.4)
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where λ is a constant controlling the relative contributions of the two terms. When λ = 0,
the original sum of squares is obtained; progressively increasing λ gives more weight to
the second term and hence discourages the estimated regression function from being too
wiggly. Thus the second term can be thought of as a ‘roughness penalty’, and λ can be
interpreted as a smoothing parameter in exactly the same way as the bandwidth h for
local linear smoothers: increasing λ leads to smoother estimates of m(·). In particular,
increasing λ indefinitely will ultimately lead to an estimated regression function for which
m′′(x) ≡ 0: this is just a straight line. As with local linear smoothing, the penalised sum
of squares approach contains ordinary least squares regression as a special case.

Denoting the ordered covariate values in the observations by x(1) < x(2) < · · · < x(T ),
it can be shown (Wood, 2006, Section 4.1) that the estimated regression function m̂(·)
obtained by minimising (4.4) consists of T + 1 connected segments, defined respectively
on the intervals

(−∞, x(1)

)
,
(
x(1), x(2)

)
, . . . ,

(
x(T −1), x(T )

)
,
(
x(T ),∞

)
.

The outermost segments are linear (whence their contributions to the second term in
(4.4) are zero); the T − 1 remaining segments are cubic polynomials, constrained so that
the estimated regression function is continuous throughout and has continuous first and
second derivatives. Such a function is called a cubic smoothing spline; the individual
linear and cubic components form the basis for representing the regression function in
this context. Cubic smoothing splines are linear smoothers (Simonoff, 1996, Section 5.6;
Davison, 2003, page 532).

Several variants on cubic splines are available for nonparametric regression. For
example, in a cubic regression spline the segments are defined not by the individual
covariate values but rather by a set of K � T knots , chosen to cover the overall range
of the covariate; fitting is still carried out by minimising a penalised sum of squares of
the form (4.4). Thus the basis dimension (i.e. the number of ‘building blocks’ used to
construct the estimated regression function) is reduced from T + 1 to K + 1. This reduc-
tion brings computational advantages with little loss of flexibility; thus, providing K is
large enough, cubic regression splines usually provide perfectly adequate estimates of
the regression function. An alternative approach is to constrain the spline coefficients in
adjacent segments to be similar to each other in some sense; this leads to the penalised
splines of Eilers and Marx (1996). Penalised splines are used in Chapter 10 of the present
volume; a more extensive description is given there. Wood (2006) gives a good review
of different types of spline; the methods described therein are implemented in the mgcv

library for R.

4.1.4 Choice of smoothing parameter

In Section 2.3 we saw that when a time series is smoothed to visualise a trend, the
results depend on the precise choice of weights. Similarly, in a nonparametric regression
context the result depends on the smoothing parameter chosen. For both local linear and
spline smoothers, increasing the smoothing parameter indefinitely will cause the estimated
regression function to approach a straight line; in contrast, as smoothing decreases the
smoother tends to interpolate the data. In Section 2.3 we saw that special filters can be
designed to extract specific features of interest, and indeed similar considerations can be
used to choose a smoothing parameter in the current context (see Hastie and Tibshirani,
1990, Section 3.7 for example). However, the model based framework of this chapter
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provides an alternative means of choosing the smoothing parameter: rather than thinking
about specific features that might be of interest, we can ask how best to estimate the
regression function m(x) in (4.1).

It turns out that there is a trade-off between the bias and variance of the estimator
m̂(x). For local linear smoothers, an increase in the smoothing parameter leads to more
data points being given appreciable weight in (4.3), so that the ‘effective sample size’
used for estimation of m(x) increases: this reduces the variance of the estimator. On the
other hand, if the true regression function is markedly nonlinear then it will be poorly
approximated by a straight line except in the immediate neighbourhood of x: in this case,
choosing too large a smoothing parameter will generally lead to bias in the estimation of
m(x). In Chapter 7 of the present volume, Giannitrapani et al. give a precise formulation
of this. Here we give a simple formal demonstration of the bias problem. Recall that the
observations y are regarded as the realised values of random variables Y, and let m and ε

denote the corresponding vectors of regression function values and errors. Then we have
Y = m + ε so that

E [SY] = E [S (m + ε)] = Sm.

Thus, for any linear smoother to be unbiased we require Sm = m, i.e. that the true
regression function m(·) is unaffected by smoothing. For local linear smoothing, it should
be clear that this is the case if m(·) is constant or linear (if the input is a straight line, the
output will be the same straight line): the method is therefore unbiased in these specific
cases. In general, however, Sm �= m and hence m̂(·) is a biased estimator.

The bias–variance trade-off is a feature of all nonparametric regression methods,
not just local linear smoothing. In general, increasing the smoothing parameter leads to
reduced variance and increased bias (and vice versa). Thus it is important to choose the
smoothing parameter appropriately. There are various methods available for making this
choice, including cross-validation and generalised cross-validation, as discussed in Hastie
and Tibshirani (1990), Simonoff (1996), Wood (2006). The idea here is, omitting each
data point in turn, to fit the model using a range of different smoothing parameters and
use the fitted models to predict the response variable at the omitted data points. Some
measure of prediction error, aggregated over all data points, is then computed for each
of the candidate smoothing parameter values, and the ‘optimal’ value is taken as the
one yielding the smallest aggregate error. However, such techniques can be unreliable in
the presence of autocorrelation (for example Bowman and Azzalini, 1997, Section 7.5;
Simonoff, 1996, Section 5.5; Hart, 1991). This is essentially because it is difficult to
distinguish between smooth trends and strong autocorrelation; see Section 4.4 below.

As an alternative to cross-validation, the appropriateness of a particular smoothing
parameter value may be checked by calculating the effective degrees of freedom of the
fitted model. In parametric settings, the degrees of freedom (df) of a model usually cor-
respond to the number of regression coefficients estimated and the residual degrees of
freedom correspond to the number of independent data points remaining. It is not imme-
diately obvious that these concepts can be applied to nonparametric models; however,
Hastie and Tibshirani (1990, Section 3.5) discuss some definitions for use with linear
smoothers that are nowadays generally accepted. These are

dfpar = tr(S̃) and dferr = T − tr(2S̃ − S̃S̃
′
), (4.5)

where ‘tr’ denotes the trace of a matrix (i.e. the sum of its diagonal elements) and S̃

is the analogue of the hat matrix as defined earlier. Here, dfpar denotes the degrees of
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freedom for the model (i.e. the effective number of parameters) and dferr denotes the
residual degrees of freedom.

To give some insight into these definitions, recall that the hat matrix in a parametric
regression model is defined (see Section 3.1.3) as H̃ = X

(
X′X

)−1
X′, where X is the

T × k design matrix of covariates. Using the standard result that tr (AB) = tr (BA) for
any matrices A and B such that both matrix products are well defined (Healy, 2002,
page 17; Schott, 1997, pages 4–5), we have

tr(H̃ ) = tr
[
X

(
X′X

)−1
X′

]
= tr

[(
X′X

)−1
X′X

]
= tr (I k) ,

where I k is the k × k identity matrix. Clearly the trace of this is just k, the number
of regression coefficients estimated. So in a parametric setting, dfpar is equal to the
number of regression coefficients. Similarly, using the fact that that H is symmetric and
idempotent (Section 3.1.3) it can be shown that dferr is equal to the residual degrees of
freedom in this setting.

The analogy with parametric regression models shows that dfpar can be thought of as a
measure of the complexity of the fitted regression function. Moreover, in general there is a
one-to-one relationship between the smoothing parameter and dfpar (Hastie and Tibshirani,
1990, Section 3.5) so that there is a unique smoothing parameter associated with each
value of dfpar (although a numerical root-finding algorithm is usually required to find it).
This provides the opportunity to make an informed choice of smoothing parameter if the
analyst has some idea of the likely complexity of the regression function. For example, in a
trend analysis it may be deemed unlikely that the trend function (i.e. a regression function
with the time index as covariate) has more than two turning points over the period of
record. In some sense, such a function is of equivalent complexity to a cubic polynomial.
Since a cubic polynomial has four parameters, choices of smoothing parameter leading
to dfpar > 4 would be considered inappropriate. This is similar in spirit to some of the
techniques discussed in Section 2.3, in that the analyst is required to provide some input
regarding the kind of structure of interest.

For a cubic regression spline, the basis dimension (or, equivalently, the number of
knots K) dictates the maximum possible degrees of freedom; this observation can be used
to determine the number of knots to use in any particular application. In general K should
comfortably exceed the anticipated degrees of freedom of the regression function, so that
the spline has sufficient flexibility to represent the structure of interest. (Generalised)
cross-validation can then be used to choose the smoothing parameter λ in (4.4) as usual;
this will typically lead to an estimated regression function with fewer degrees of freedom
than the theoretical maximum (if this is not the case, the implication is that the structure
in the data may be too complex to be represented by a regression spline with K knots, and
hence the value of K should be increased). This idea is used in the mgcv library in R.

For spline based smoothers, a completely different approach to smoothing parameter
selection is based on the observation that a penalised least squares criterion such as (4.4)
can also be regarded as the log-likelihood for a mixed-effects model in which the regression
coefficients are split into two groups, some of which are considered as fixed and others
(corresponding to the individual spline contributions) as the realised values of random
variables (Wood, 2006, Section 6.6). This has close connections with state space modelling
(Section 5.5), where underlying trends can be modelled as evolving stochastically but
smoothly through time. In a mixed-effects formulation, the smoothing parameter appears
as an intrinsic part of the model specification and hence can be estimated using likelihood
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based or Bayesian methods. Kneib and Fahrmeir discuss the Bayesian approach in more
detail in Chapter 10 of the present volume.

As an alternative to these ‘formal’ techniques, graphical methods may be (and
commonly are) used to choose an appropriate smoothing parameter: here the analyst
makes a judgement based on a visual inspection of the data and estimated regression
function, perhaps taking into account knowledge of the system under investigation to
judge whether a specific estimate of the regression function is reasonable. Such an
approach is, of course, open to accusations of subjectivity: it may be helpful, therefore,
to repeat any critical analyses using a range of plausible smoothing parameter values in
order to determine whether or not the conclusions are sensitive to the precise choice.

Example 4.1
To illustrate the methods described above we revisit the series of annual mean wind speeds
at De Bilt, seen previously in Figures 1.1 and 2.1. In Figure 4.1(a), local linear smoothing
has been used to produce two different estimates of the underlying trend in this series. For
the solid curve, the smoothing parameter h in (4.3) has been chosen using cross-validation;
the resulting estimate has dfpar = 5.0 effective degrees of freedom. For the dashed curve,
a smoothing parameter corresponding to 4 effective degrees of freedom has been chosen.
With fewer degrees of freedom, the resulting structure is (formally) slightly less complex
than for the cross-validated estimate, although visually the two curves appear very similar
in this example.
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Figure 4.1 Nonparametric trend estimates for annual mean wind speeds at De Bilt,
obtained using (a) local linear smoothing and (b) cubic regression splines.

Figure 4.1(b) shows the same data. Here, however, the trend is estimated using a cubic
regression spline with the smoothing parameter λ in (4.4) chosen using cross-validation.
This was produced using the gam() function in the R package mgcv, with the number
of knots K set to the default value (which is 10, according to Wood, 2006, page 224).
The result is very similar to the cross-validated local linear estimate. Unsurprisingly, the
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effective degrees of freedom is also similar: dfpar = 4.9 here. This illustrates the point
made in Section 4.1.2, that in nonparametric regression the end results are often insensitive
to the precise method of smoothing used. �

4.1.5 Variance estimators

After model fitting, it is necessary to provide an estimate of the error variance σ 2. In
linear modelling the residual sum of squares (RSS) provides a basis for this, as discussed
in Section 3.1. The analogue in the nonparametric setting is

RSS =
T∑

t=1

[Yt − m̂ (xt )]
2

and, as described above, the approximate degrees of freedom for error can be taken as
dferr = T − tr(2S̃ − S̃S̃

′
). The quantity

σ̂ 2 = RSS/dferr (4.6)

is therefore a natural estimator of σ 2, being the direct analogue of (3.21) in the parametric
case. With the definition of dferr given here, if m̂(·) was unbiased as an estimator of m(·)
then σ̂ 2 would be unbiased as an estimator of σ 2 (Hastie and Tibshirani, 1990, Section 3.9).

However, since m̂(·) is usually biased, in general (4.6) is a biased estimator of σ 2

in nonparametric regression models. Alternative variance estimators have been suggested
by Rice (1984) and Gasser, Sroka and Jennen-Steinmetz (1986). Rice (1984) proposed an
estimator based on differences of the response variable, in order to remove the principal
effects of the underlying mean curve. In contrast, the approach by Gasser, Sroka and
Jennen-Steinmetz (1986) involves a form of linear interpolation. Pseudo-residuals are
defined as

ẽt = xt+1 − xt

xt+1 − xt−1
Yt−1 + xt − xt−1

xt+1 − xt−1
Yt+1 − Yt (t = 2, . . . , T − 1)

= atYt−1 + btYt+1 − Yt , say,

and the error variance is then estimated as

σ̃ 2 = 1

T − 2

T −1∑
t=2

c2
t ẽ

2
t , (4.7)

where c2
t = (

a2
t + b2

t + 1
)−1

. This works because ẽt is the difference between Yt and the
line joining its two immediate neighbours. This line can be thought of as some form of
minimal smoother, since it is based on just two data points. Thus it provides an estimate
of m (xt ) with low bias, so that (4.7) has attractive properties as a variance estimator.

4.1.6 Standard errors for the regression function

Having estimated the vector m of regression function values along with the error variance,
it is usually of interest to quantify the uncertainty in the regression function estimate. In
the first instance this is most easily achieved by calculating standard errors for each
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element of m̂. For a linear smoother, these standard errors are easily derived from the
covariance matrix of m̂ = SY:

Var (m̂) = Var (SY) = SVar (Y)S ′ = σ 2SS ′.

In practice, σ 2 must be replaced in this expression by an estimate obtained using any of
the methods described above.

For presentational purposes, it can be helpful to produce a plot of the estimate m̂
along with approximate pointwise 95 % variability bands (Bowman and Azzalini, 1997,
Section 4.4). If the errors {εt } are normally distributed then these bands can be computed,
for each element of m̂, as

Estimate ± 2 standard errors.

Note that, in general, the resulting intervals cannot be interpreted as confidence intervals:
this is due to the potential bias of m̂ as an estimator of m. Even in the absence of bias, care
is required in the interpretation of such bands since they are not able to represent uncer-
tainty about all values of m simultaneously. In general, the relation between pointwise and
global uncertainty assessments is far from straightforward (Hastie and Tibshirani, 1990,
Section 3.8). Nonetheless, variability bands are often useful aids to the interpretation of
nonparametric regression estimates.

4.1.7 Testing for consistency with parametric models

It is often of interest to assess formally whether the data are consistent with some pre-
specified form of regression function. For example, a constant regression function implies
that the covariate has no effect on the response: if the covariate is the time index then
this corresponds to a complete absence of trend. Alternatively, if the regression function
can be regarded as linear then there is some justification for switching to a parametric
modelling approach.

By analogy with classical regression theory, it is natural to use residual sums of
squares to construct tests of the null hypothesis that the underlying regression function
has a specified parametric form. Specifically, if RSS0 and RSS1 denote the residual sums
of squares under the parametric and nonparametric models respectively, then a direct
analogue of the usual F statistic (see Section 3.2.3) is

F = (RSS0 − RSS1) /(df0 − df1)

RSS1/df1
. (4.8)

Here, df0 is the residual degrees of freedom for the parametric model and df1 is its
nonparametric counterpart, defined as dferr in (4.5). In the parametric setting, under the
null hypothesis the F statistic is distributed as F(df0 − df1, df1). Heuristic arguments have
been used to justify the continued use of this result in the nonparametric setting (Hastie
and Tibshirani, 1990, Section 3.9) and experience suggests that it performs reasonably
in practice. In the absence of strong theoretical justification for its use, however, an
alternative may be helpful. We describe here a procedure given by Bowman and Azzalini
(1997, Section 5.2), once again under the assumption that the errors {εt } are normally
distributed. The procedure is appropriate for use whenever the nonparametric estimator
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is unbiased under the null hypothesis (H0, say), i.e. when S̃m = m. In Section 4.1.4, we
saw that this is the case for local linear smoothing when the true regression function is
constant or linear. The same is true for cubic splines, as should be clear by inspection of
the penalised least squares criterion (4.4).

Notice first that (4.8) is proportional to

F̃ = RSS0 − RSS1

RSS1
(4.9)

and the p-value for the test can be written as as P
(
F̃ > F̃obs

)
, where F̃obs is the observed

value of F̃ . Now the residual vector for the nonparametric model can be written as
e1 = (

I T − S̃
)

Y, where I T denotes the T × T identity matrix. Note that if the nonpara-
metric estimator is unbiased under H0 then

(
I T − S̃

)
m = 0, so the residual vector can

equivalently be written as e1 = (
I T − S̃

)
(Y − m) = (

I T − S̃
)
ε, where ε = (ε1 · · · εT )′

is the vector of (unobserved) errors in the model (4.1). Thus, under H0, we have

RSS1 = e′
1e1 = ε′ (I T − S̃

)′ (
I T − S̃

)
ε = ε′Aε, say.

Similarly, the parametric least squares estimator is unbiased under H0. Thus, letting H

denote the hat matrix for the parametric fit, we have

RSS0 = ε′ (I T − H )′ (I T − H ) ε = ε′ (I T − H ) ε.

The last step here follows from the fact that the hat matrix is guaranteed to be symmetric
and idempotent (see Section 3.1.3).

The numerator in (4.9) can now be written as

RSS0 − RSS1 = ε′ [I T − H − A] ε = ε′Bε, say.

Therefore we can write F̃ = ε′Bε/ε′Aε and the p-value of the test is

P
(
F̃ > F̃obs

) = P
[
ε′Bε > F̃obsε

′Aε
] = P

[
ε′Cε > 0

]
say, (4.10)

where C = B − F̃obsA is a symmetric matrix. Now define Z = ε/σ so that ε = σZ,
where σ 2 is the error variance in (4.1). Substituting this into (4.10), we find that

P
(
F̃ > F̃obs

) = P
[
σ 2Z′CZ > 0

] = P
[
Z′CZ > 0

]
,

which is a probability statement involving a quadratic form in standard normal random
variables. This, coupled with the symmetry of C, enables (4.10) to be approximated by
referring to the quantiles of a scaled and shifted chi-squared distribution. The technique
is used in Chapter 7 where more details are given; see also Bowman and Azzalini (1997,
pages 87–88).

This procedure completely avoids the need to define approximate degrees of freedom
for the nonparametric regression estimate, and hence has a more solid theoretical founda-
tion than the F test based on (4.8). In R, the sm.regression function in the sm library
implements the procedure for testing the null hypotheses that the true regression function
is constant or linear. As an alternative, however, parametric or nonparametric bootstrap



138 METHODOLOGY

methods1 (see Section 3.6) could be used to determine the distribution of a test statistic
such as (4.9) under the null hypothesis.

The result of any of these test procedures will, of course, depend on the choice of
smoothing parameter. In particular, if the data themselves may have been used to select
the amount of smoothing (for example via cross-validation or subjective visualisation),
then the choice of smoothing parameter represents a source of uncertainty that is not
accounted for by the theory above. As noted by Wood (2006, Chapter 4), the effect is
generally to underestimate standard errors and to produce p-values that are too small
when testing hypotheses. It is therefore worth exploring the sensitivity of the result to
this choice, at least within a reasonable range. Bowman and Azzalini (1997, Chapter 5)
suggest using a significance trace to determine this sensitivity: this is a plot of the p-value
against the smoothing parameter.

To visualise the result of a test of the hypothesis that the regression function has a
specified parametric form, it can be helpful to produce a graphical diagnostic by plotting
a reference band (Bowman and Azzalini, 1997, Chapter 5) to indicate where the smooth
curve should lie under the null hypothesis. For notational convenience, we consider the
evaluation of such bands only at the observed covariate values: the difference between
the corresponding vectors of parametric and nonparametric estimators is then

(
H − S̃

)
Y.

Note that under H0, the parametric estimator is always unbiased. If S̃Y is also unbiased,
we have E

[(
H − S̃

)
Y

] = 0. It follows that if the observations are uncorrelated, the
covariance matrix of the difference between the two estimators is

σ 2 (
H − S̃

) (
H − S̃

)′
,

from which the corresponding standard errors can be extracted. Thus, under the assump-
tion of normality, a pointwise 95 % reference band for the smooth curve under the null
hypothesis is defined by the vectors

HY ± 1.96σ

√
diag

[(
H − S̃

) (
H − S̃

)′]
. (4.11)

Areas where the smooth curve lies outside the reference band highlight features of
departure from the null model. In practice, of course, an estimate of σ 2 must be sub-
stituted; the resulting reference band is approximate rather than exact. Once again, the
sm.regression function provides an implementation in R.

Example 4.2
Figure 4.2(a) shows the annual wind speed series from De Bilt, with a trend estimate
and variability band superimposed. The trend estimate is the same as the solid line in
Figure 4.1(a). However, the variability band now gives some indication of the precision
of the estimate. Notice that the band widens at each end of the series, where fewer
observations are available from which to estimate the regression function.

The variability band gives an indication of how much the true regression function
might be expected to vary about its estimate. By contrast, a reference band indicates
where the estimate might be expected to lie if the regression function is constant or

1 Note that parametric and nonparametric bootstraps are distinguished by the way in which the
stochastic components of the artificial bootstrap datasets are generated. By contrast, parametric and
nonparametric regressions are distinguished by the way in which the systematic component of a
model is represented.
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Figure 4.2 Nonparametric trend estimates for annual mean wind speeds at De Bilt using
local linear smoothing (a) with approximate 95 % variability band, (b) with 95 % reference
band computed under the assumption that the trend is linear. Panel (c) is a significance
trace showing the p-value for the test of linearity as a function of the smoothing parameter,
with ‘automatic’ choices indicated, and panel (d) shows the ACF of residuals from the
estimated trend in (a) and (b). The smoothing parameter in panels (a) and (b) is chosen
using cross-validation and corresponds to the ‘CV’ value in panel (c).

linear. This is illustrated in Figure 4.2(b). Here, in addition to the local linear smooth, the
least squares linear trend estimate is shown along with a 95 % reference band, computed
from (4.11) under the assumption that the trend is linear. The smooth estimate falls outside
the reference band for the first half of the 1960s and again during the 1970s, suggesting
that the data are not well modelled by a linear trend. This is confirmed by testing the null
hypothesis of linearity: the p-value for this test, obtained using the scaled and shifted chi-
squared approximation to (4.10) as implemented in the sm library in R, is 0.01. Notice,
incidentally, that in rejecting the hypothesis of a linear trend, we also reject the hypothesis
of no trend since this corresponds to a linear trend with zero slope. This therefore suggests
that there is a nonlinear trend in annual mean wind speeds at De Bilt.

To determine the sensitivity of these results to the choice of smoothing parameter,
Figure 4.2(c) shows a significance trace for the test. For all smoothing parameter values in
the range (2, 20) the null hypothesis of linearity is rejected comfortably at the 5 % level,
giving some reassurance that the result is insensitive to the precise choice. This range of
values easily encompasses any that could be considered ‘reasonable’, as indicated by the
two vertical lines on the plot and by the fact that the smoothing parameter corresponding to
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four effective degrees of freedom, used to obtain the dashed trend estimate in Figure 4.1(a),
is h = 6.4 years. The first of the vertical lines indicates the smoothing parameter obtained
via cross-validation and used to obtain the results in Figures 4.2(a) and (b). The second
indicates the smoothing parameter obtained using an alternative method of ‘automatic’
selection motivated by the AIC (see Section 3.2.3) and proposed by Hurvich, Simonoff
and Tsai (1998).

Finally, as with all models, it is important to be aware of the assumptions underlying
nonparametric regression techniques: (4.1) specifies that the errors {εt } are uncorrelated
with constant variance. As usual, this can be checked using appropriate residual plots.
By way of an example, Figure 4.2(d) shows the ACF of residuals from the local linear
trend estimate. Notice that the computation of residuals from a nonparametric smooth is
very similar to detrending via filtering (see Section 2.3.4) and, as with any other filtering
process, this induces artificial structure. Thus the approximate 95 % bands in Figure 4.2(d)
are incorrect since they are computed under the assumption that the input series is white
noise. For a more accurate picture, it would be necessary to consider that under model (4.1)
the covariance matrix of the residuals from a linear smooth is σ 2

(
I T − S̃

) (
I T − S̃

)′
(this

follows in exactly the same way as for the parametric case considered in Section 3.1.3).
However, for present purposes it suffices to note that there is little evidence of residual
autocorrelation in Figure 4.2(d). A plot of the time series of residuals (not shown) suggests
that the assumption of constant variance also seems reasonable; hence we may have some
confidence in the conclusions of the analyses above. �

4.2 Multiple covariates

4.2.1 Additive, semiparametric and bivariate models

In the presence of more than one covariate, model (4.1) can in principle be extended
straightforwardly: given covariates

{
x1t , . . . , xpt : t = 1, . . . , T

}
one could write

Yt = m
(
x1t , . . . , xpt

) + εt (t = 1, . . . , T ).

Unfortunately, however, if p is large then enormous quantities of data are usually
required to estimate the regression function in such a model without imposing additional
assumptions. To understand this intuitively, consider what would be required to estimate
m

(
x1, . . . , xp

)
using local linear smoothing: it would be necessary to carry out a

weighted multiple linear regression of the response upon the covariates, allocating most
weight to data points with covariate values ‘close’ to the configuration of interest. Taking
the covariates individually, this is unproblematic: for the j th covariate, a specific choice
of bandwidth may lead to some proportion, say πj , of the observations being deemed
close to xj . Considering the covariates simultaneously, however, it is necessary to find
observations that are close to the configuration of interest in each of p dimensions: if
the covariates are roughly uncorrelated, such observations will form a proportion of
about π1 × π2 × · · · × πp of the total sample. If p is large then this proportion will be
very small. For example, if p = 4 and π1 = π2 = π3 = π4 = 0.25, only a proportion
0.254 (i.e. just under 0.5 %) of the observations will be given appreciable weight in the
estimation. Clearly, any estimator constructed from such a small proportion of the data
will be extremely variable unless the sample size is large. This phenomenon is referred
to as the curse of dimensionality (Hastie and Tibshirani, 1990, Section 4.2; Simonoff,
1996, page 101).
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To overcome the curse of dimensionality in practice, usually additional assumptions
are required. A common assumption is that the regression function is additive, in which
case the effects of the covariates can be considered separately in an additive model (Buja,
Hastie and Tibshirani, 1989; Hastie and Tibshirani, 1990; Stone, 1985):

Yt = α +
p∑

j=1

mj

(
xjt

) + εt (t = 1, . . . , T ). (4.12)

Here, mj

(
xjt

)
is a smooth function of the j th covariate, satisfying the constraint∑T

t=1 mj

(
xjt

) = 0, and the errors {εt } are assumed to be independent with mean 0
and variance σ 2. Informally, by imposing the restriction of additivity, each of the
smooth functions can be estimated in turn so that to estimate mj(·) one has only to
find data points that are close to the value(s) of interest in the j th dimension. If the
assumption of additivity is not warranted, however, bivariate terms can be included
to model pairwise interactions between covariates; see McMullan, Bowman and Scott
(2007) for an example in which nonparametric trend estimates are allowed to vary with
spatial location. Alternatively, one might choose to impose additional assumptions on
the smoothness of the regression function instead of assuming additivity; this leads to
thin plate regression splines as a generalisation of the cubic regression splines already
encountered (Wood, 2006, Section 4.1).

In a model such as (4.12), the individual smooth functions may be estimated and
combined using the backfitting algorithm , described below. Smooths can be obtained
for each of the model components separately, using different smoothing parameters and
methods of smoothing for each component if necessary. The representation of seasonality
in an environmental time series is one specific example where different smoothing methods
may be required for different components. For example, a simple additive model for a
monthly environmental or ecological time series might be

Yt = α + m1 (year) + m2 (month) + εt ,

where ‘month’ denotes the month number within the year, from 1 to 12. In this model,
the smooth functions for year and month represent trend and seasonality respectively.
The trend component could be estimated using local linear or spline smoothers. However,
without modification neither of these techniques would deliver a satisfactory estimate of
the seasonal cycle, because by definition this should be periodic: months 12 and 1 are
‘neighbours’ and the estimated smooth function m̂2 (·) should ensure a smooth transition
between them. In the context of spline smoothing, this can be dealt with via the use of
cyclical splines as described in Wood (2006, Section 4.1). For local linear smoothing one
could use a periodic kernel function, for example based on the von Mises rather than the
Gaussian distribution (see, for example, Fisher, 1993, or Mardia and Jupp, 1999). The
von Mises distribution yields local regression weights

w(xt − x; h) = exp

[
1

h
cos

(
2π

xt − x

M

)]
,

where M is the cycle length (12 in the hypothetical example above). Even in this case,
however, a local linear regression of Yt upon the month number would be inappropriate; a
local mean (Nadarya–Watson) estimator can therefore be used instead, to create a circular
smoother. This technique is implemented in the sm.regression routine in R.
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Additive models can be extended to generalised additive models (GAMs) in a
similar way that linear models can be extended to generalised linear models (GLMs; see
Section 3.5). GAMs are identical to GLMs, except that the linear predictors {ηt } are now
replaced with additive predictors. Thus μt , the expected response at time t , satisfies

ηt = g (μt ) = α +
p∑

j=1

mj

(
xjt

)
(4.13)

for smooth functions
{
mj (·) : j = 1, . . . , p

}
. Relevant applications in the literature

include Clarke et al. (2003) who model trends of seabird populations, Fewster et al.
(2000) who examine population trends in farmland birds and Bellido, Pierce and Wang
(2001) who consider variation in abundance of squid in Scottish waters. Implementations
in R can be found in the mgcv library already mentioned, as well as the gam library
(Hastie, 2008).

Further extensions include Hastie and Tibshirani (2000), who provide a Bayesian
procedure for posterior sampling from additive and generalised additive models, and
Green, Jennison and Seheult (1985). The latter authors consider semiparametric models
in which the linear predictor contains both parametric and smooth components.2 In a
semiparametric model, the linear predictor ηt is written as

ηt = α +
p∑

j=1

mj(xjt ) + zt β, (4.14)

so that the additive model structure (4.13) is augmented with a linear combination of
other covariates zt . The fitting of such models can be speeded up by exploiting the partly
parametric structure; see Hastie and Tibshirani (1990, Section 5.3.3) for example.

4.2.2 The backfitting algorithm

Additive and generalised additive models can be fitted by the backfitting algorithm: see
Hastie and Tibshirani (1990, Section 4.4) and Wood (2006, Section 4.11). This involves
iteratively smoothing with respect to each covariate, using as response the partial residu-
als (i.e. residuals computed from the other model components) and at each stage carrying
out additional adjustment to ensure that

∑T
t=1 m̂j

(
xjt

) = 0. The mean of the observations
provides an estimate of α: α̂ = ȳ, say. Full details are given by Giannitrapani et al. in
Chapter 7 of the present volume: therefore we restrict ourselves here to some relatively
brief comments in the context of linear smoothers. Most of the algebraic manipulations are
the same regardless of the set of evaluation points (i.e. covariate configurations at which
the model components are estimated); however, for purposes such as the explicit con-
struction of residuals, the model components must be evaluated at the observed covariate
values. The development below therefore focuses mainly on this setting.

Let S∗
j denote the fundamental smoothing matrix associated with the j th model

component (i.e. the matrix used to smooth the residuals at each iteration of the back-
fitting algorithm). Because of the iterative nature of the algorithm, in general there is

2 Strictly speaking, the term semiparametric originally referred to a model in which just one of
the covariate effects was represented nonparametrically (e.g. Hastie and Tibshirani, 1990, page 118).
Our usage is consistent with more recent practice, for example Ruppert, Wand and Carroll (2003).
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no simple relationship between the {S∗
j } and the estimated components {m̂j } obtained

on convergence: we do not have m̂j = S∗
j y for example. However, since each iteration

involves linear transformations of the data vector, for each j ∈ {1, . . . , p} we do have
m̂j = S̃j y for some matrix S̃j . The {S̃j } are usually referred to as projection matrices
in the literature, since they map the observations y into the fitted model components. In
Chapter 7, Giannitrapani et al. show how these projection matrices can be constructed
recursively as the backfitting algorithm progresses: see Equation (7.11). The idea has also
been used by Bowman, Giannitrapani and Scott (2009).

In the notation above, the vector of fitted values for the model can be obtained upon
convergence as

ŷ = α̂1 +
p∑

j=1

m̂j =
p∑

j=0

S̃j y = S̃y, say,

where S̃ = ∑p

j=0 S̃j and S̃0 is the T × T matrix filled with the value T −1. The effective
degrees of freedom dfpar and dferr can now be defined using (4.5) exactly as before, and
used to construct dispersion parameter estimates analogous to (4.6) (for more discussion of
these estimates, see Chapter 7). However, analogues of the alternative dispersion param-
eter estimators, introduced previously in the context of regression on a single covariate,
are more difficult to construct here.

Noting that the effective number of model parameters is defined as dfpar = tr(S̃) and
that S̃ = ∑p

j=1 S̃j , it is natural to define the effective number of parameters for the j th
model component as tr(S̃j ): thus the total number of parameters can be decomposed
into contributions from the individual covariates. As before, this can be used to check the
choice of smoothing parameter(s) when the analyst has some idea of the likely complexity
of the individual model components (see Chapter 7 for an example of this). Notice,
however, that tr(S̃j ) depends not only on the fundamental smoothing matrix S∗

j but also on
the other components in the model: this differs from the situation in parametric regression
models, where the degrees of freedom for each component is always equal to the number
of additional parameters required to specify that component. In the nonparametric case,
the dependence upon other model components reflects the fact that the complexity of
the estimate m̂j (·) will itself vary depending on whether or not other components are
included in the model: for example, a nonparametric model has the flexibility to try and
adapt to structure arising from the omission of an important covariate.

As a more easily computed alternative to the definition given above, Hastie and
Tibshirani (1990) suggest that the degrees of freedom for the estimate m̂j (·) can
be approximated by tr(S∗

j ) − 1. The reduction by 1 here is due to the constraint∑T
t=1 mj

(
xjt

) = 0: this is automatically incorporated into the ‘exact’ definition tr(S̃j )

(again, see Chapter 7 for full details).
As described above, the backfitting algorithm provides estimates of the smooth func-

tions {mj(·)} only at the observed covariate values. If estimates are required at other values
as well (for example to represent the model components on a regular grid for plotting
purposes) then some extra work is needed. For smoothers that use basis functions, such as
cubic regression splines, this work is relatively straightforward: one simply evaluates the
basis functions at the covariate values of interest, as implemented in the predict.gam

routine in the R library mgcv (Wood, 2006, Section 5.2.6). For local linear smoothers,
more care is required: one solution is to smooth the partial residuals from the final iter-
ation of the backfitting algorithm on to the desired evaluation points. To ensure that the
results for the j th component are consistent with the constraint

∑T
t=1 mj

(
xjt

) = 0, these
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evaluation points should include at least one of the observed values of xjt : any change
in the estimated component here can then be added back to all of the results.

An extension of the basic backfitting algorithm can be used to fit generalised additive
models. This extension is best understood with reference to the iteratively weighted least
squares (IWLS) algorithm used for fitting GLMs (see Section 3.5.1). The IWLS algorithm
consists of a sequence of weighted least squares fits in which both the response variable
and the weights change at each iteration. Recall from Equation (3.43) that any weighted
least squares fit is equivalent to an unweighted fit after transforming both the response
and covariates. Thus, to adapt the IWLS algorithm for use with GAMs, each weighted
least squares fit is replaced with a complete cycle of the backfitting algorithm in which the
response and covariates are all adjusted and transformed to yield an unweighted smoothing
problem. For further details, see Hastie and Tibshirani (1990, Section 6.3).

The backfitting algorithm is implemented in the gam library in R. However, it is
not the only way to fit GAMs. In principle at least, providing the individual smoothers
are linear the smooth functions can be estimated simultaneously as described by Wood
(2006, Chapter 3) and Hastie and Tibshirani (1990, Section 5.2); the former treatment
exploits the special features of spline based smoothing. The price to pay for simultaneous
estimation is an increase in computational cost; however, with modern computing power
this is not a problem except when very large data sets are involved.

4.2.3 Inference for additive models

In nonparametric regression, as in any other modelling exercise, to answer questions of
substantive interest requires the use of tools that allow us to draw inferences about the
model components (e.g. to determine whether they are statistically significant or to assess
the uncertainty in an estimated smooth function).

As usual, the key is the estimation of standard errors for the individual components
and the formulation of test statistics for model comparison. For additive models based
on linear smoothers, much of the necessary theory is a straightforward extension of that
described in Section 4.1. For example, the standard errors associated with the estimated
component m̂j can be derived by considering the covariance matrix

Var
(
m̂j

) = Var
(
S̃j Y

) = S̃j Var (Y) S̃
′
j = σ 2S̃j S̃

′
j ,

which can be estimated by replacing σ 2 with its estimate σ̂ 2 = RSS/dferr as before. A
variability band can then be constructed, as described in Section 4.1.6.

In the case of a single covariate, we have shown in Section 4.1.7 how to construct tests
of hypotheses that the underlying regression function is constant or linear. Such techniques
can be regarded as extensions of the classical procedures for comparing nested models
(Sections 3.2 and 3.5), since a smooth regression function includes ‘constant’ or ‘linear’
functions as special cases. When dealing with multiple covariates, the range of possibilities
is substantially greater: for example, one may be interested in comparing nested models to
determine whether or not a particular subset of covariates influences the response (which
is equivalent to testing the hypothesis that the corresponding model components are zero),
to determine whether some or all of the covariate effects are linear or perhaps to determine
whether a bivariate smooth term can be split into additive univariate components.

For additive models, ‘F -like’ statistics, of the same form as (4.8) but where now df0

and df1 in (4.8) correspond to the residual degrees of freedom for the reduced and extended
models respectively, can be used to test hypotheses. For generalised additive models the
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residual sums of squares are replaced by residual deviances, by direct analogy with the
usual procedure for GLMs (see Section 3.5.2). As in Section 4.1.7, for models with an
unknown dispersion parameter it is common practice to proceed as though the test statistic
is distributed as F(df0 − df1, df1) under the null hypothesis that the data were generated
from the simpler of the two models (see Wood, 2006, Section 4.10 for an accessible
discussion of the issues involved here); alternatively a quadratic form test analagous to
(4.10) can be used. It is worth noting, however, that the derivation of the latter test relies
on the nonparametric estimators being unbiased under the null hypothesis: in general this
will not be the case in additive models. Exceptions occur if the null hypothesis corresponds
to a fully parametric model in which all terms are either constant or linear, at least if local
linear smoothing or regression splines are used. In general, however, the presence of bias
ensures that the earlier theory for computing the p-value corresponding to (4.10) is, strictly
speaking, incorrect (Chapter 7 discusses this issue further). Similar comments apply to the
construction of reference bands, indicating where the nonparametric estimate should lie
under the corresponding null hypotheses. For hypothesis testing purposes, the problem of
bias can be reduced by deliberately undersmoothing: having chosen a model on the basis
of the test results, the estimates can then be refined using a more appropriate smoothing
parameter. In this case, the price to pay for undersmoothing is a reduction in the power
of tests to detect genuine structure, which follows from the increased variance of the
estimators. As always, bootstrap methods provide an alternative approach that eliminates
the need for theoretical calculations, although here it may be necessary to use different
smoothing parameters when fitting the null model for the purposes of generating bootstrap
samples: see Figueiras, Roca-Pardiñas and Cadarso-Suárez (2005) and Roca-Pardiñas,
Cadarso-Suárez and González-Manteiga (2005) for examples involving environmental
applications. Finally, in situations where one wishes to test whether a particular covariate
is needed in the model at all, permutation tests (see Section 3.6) may be used: for these
tests, the potential effect of bias is perhaps less severe because the resampled data sets are
not generated from a possibly biased model fit. All of these options have their drawbacks,
however, and the problem of model selection and comparison in a nonparametric context
remains an active topic of statistical research.

There is a further feature of nested model comparisons in a nonparametric context
that is, at first sight, surprising: test statistics such as (4.8) can occasionally take negative
values. This indicates that of the two models considered (M0 and M1, say), the simpler
one (M0) provides the closest fit to the data. In a parametric setting, such an outcome is
impossible by definition of the least squares and maximum likelihood fitting procedures.
With nonparametric methods, however, there is more than one way in which the situa-
tion can occur. The first is if smoothing parameters for both models are selected using
some automatic procedure such as (generalised) cross-validation. In this case, there is a
possibility that a larger smoothing parameter will be selected for M1 so that it is unable
to capture the same amount of detail as M0: thus, despite appearances, the models are
not necessarily nested. Wood (2006, page 206) suggests that to avoid this problem care
should be taken to ensure that each smooth term in M0 has no more effective degrees of
freedom than the same term in M1.

Another scenario in which the simpler model M0 can fit better than M1 is when
M0 contains a highly variable, but nonetheless relatively parsimonious and correctly
specified, parametric component that is represented nonparametrically in M1. A high-
frequency sine wave would be an example of such a component. In this case, too large
a choice of smoothing parameter in M1 will lead to an oversmooth estimate that cannot
track the changes in the data as well as the correctly specified parametric model M0. In
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practice, this difficulty would usually be overcome by an appropriate choice of smoothing
parameter; however, it is worth being aware of the potential problem.

These two examples illustrate that inference in GAMs can be complicated by the need
to choose smoothing parameters; thus, as in the case of a single covariate, it is helpful to
explore the sensitivity of results to the precise choice.

Example 4.3
In Section 4.1 we used nonparametric methods to model trends in annual mean wind
speeds at De Bilt. Turning now to monthly instead of annual means, it becomes necessary
to consider seasonality as well as trend. In Chapter 2 (specifically Figure 2.2) we saw that
wind speeds tend to be lower and less variable in summer than in winter. The nonconstant
variability is potentially problematic for an additive modelling approach; as discussed in
Section 3.3, one way to try and allow for this is to transform the data prior to analysis.
Here, we fit models to the logarithms of the monthly means. For ease of interpretation,
the logarithms are to base 10.

The first model to be fitted is additive, with components corresponding to trend (i.e.
a nonparametric smooth of the time index) and seasonality (a smooth of the ‘month’
variable). The trend is estimated using a cubic regression spline and the seasonal cycle
using a cyclical spline as described above and implemented in the mgcv library in R;
smoothing parameters are chosen using cross-validation. The estimated components are
shown in Figures 4.3(a) and (b) respectively, along with 95 % variability bands. Note
that the smooths are centred about zero because, in an additive model, they represent
deviations from the overall mean. Apart from this, the trend component is very similar to
that obtained from the annual means in the previous section; this is hardly surprising. The
estimated seasonal cycle also seems reasonable, indicating that the highest wind speeds
occur during the winter months (specifically from December to March).

Under the assumption of additivity, the trend is the same in all months of the year.
It is, of course, possible that trends vary between months or, equivalently, that the sea-
sonal cycle changes through time. In a parametric setting, this would be investigated by
testing for the existence of interactions between the trend and seasonal covariates (see
Section 3.2.2). The nonparametric equivalent is to compare the additive model with a
bivariate smooth of the two variables. A bivariate model fit is shown in Figure 4.3(c):
here, the horizontal and vertical axes represent ‘year’ and ‘month’ respectively and the
bold contours show the expected log10 mean monthly wind speed according to the fitted
model. The smoothing parameters have again been chosen using cross-validation, but
in such a way that the chosen values are no larger than those for the previous additive
model. This is to try and ensure that the additive model is nested within the bivariate
model, as discussed above.3 If this precaution is not taken then the phenomenon described
previously occurs for these data, with the ‘simpler’ additive model yielding the smaller
residual sum of squares.

The dashed contours in Figure 4.3(c) indicate the standard errors of the fit: as before,
these are largest at the ends of the series. Inspection of Figure 4.3(c) reveals that there
does indeed seem to be seasonal variation in the trends: the characteristic increase around
1970 that was seen in the analyses of annual wind speeds and in Figure 4.3(a) seems
to be confined mainly to the winter months in the bivariate smooth, with a more or less
monotonic decrease between May and September.

3 In practice, because of the way the mgcv library works, it was necessary first to determine the
smoothing parameters for the bivariate model, and then to set these as lower bounds in the search
for optimal smoothing parameters in the additive model.
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Figure 4.3 Additive and bivariate models for the logarithms (to base 10) of monthly mean
wind speeds at De Bilt, using cubic regression splines for trend and cyclic splines for
seasonality. Smoothing parameters are chosen using generalised cross-validation. Panels
(a) and (b) are estimated trend and seasonal components for the additive model, with 95 %
variability bands. Panel (c) shows the estimated bivariate smooth (including the overall
mean); thin lines and small labels are contours of the associated standard errors. Panel
(d) shows monthly boxplots of residuals from the bivariate smooth.

Before reading too much into the patterns shown in Figure 4.3(c), however, it is
worth checking to see if the fit is significantly better than that of the additive model. The
simplest way to do this is using the approximate F test based on (4.8). The mgcv library
in R provides routines for this purpose; the output is given in Table 4.1. This shows that
the bivariate model reduces the residual sum of squares (labelled ‘deviance’ in the out-
put) by 0.034, at the cost of an extra 3.4 effective degrees of freedom. The F statistic is
2.207, which yields a p-value of 0.08 when compared with an F(3.4, 493.2) distribution.
Taken at face value, this suggests accepting the hypothesis of additivity at the 5 % level.
However, given the approximate nature of the F test, it may be worth cross-checking the
result using different techniques. This is particularly true since the log transformation has
not entirely succeeded in removing the seasonal structure in the variance: this is illus-
trated by the monthly residual distributions in Figure 4.3(d). Alternative transformations
were explored, but none was found that overcame the problem. The residual ACF (not
shown) also indicates that there is a small amount of residual autocorrelation (at lag 1,
the coefficient is 0.120); again, this may affect the inference.

As suggested previously, bootstrap methods provide an alternative means of establish-
ing the distribution of the test statistic under the null hypothesis. In fact, a nonparametric
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Table 4.1 Edited R output showing a comparison of additive and bivariate models for
monthly wind speed, using an approximate F test.

Analysis of Deviance Table

Model 1: logy ~ s(Year) + s(Month, bs ="cc")

Model 2: logy ~ te(Year, Month, bs = c("cr", "cc"))

Resid. Df Resid. Dev Df Deviance F Pr(›F)

1 496.6694 2.27720

2 493.2357 2.24275 3.4337 0.03445 2.2067 0.07748 .

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

block bootstrap (see Section 3.6) opens up the possibility to account both for the sea-
sonally changing variance and for the residual autocorrelation. This has been done here,
with the error series for each bootstrap sample generated by resampling entire years (with
replacement) from the residual time series for the bivariate model. By resampling entire
years we preserve most of the residual autocorrelation, and also ensure that the different
monthly residual distributions are represented in each bootstrap sample; 10 000 bootstrap
samples were generated to ensure that the estimated p-value is accurate to two deci-
mal places (see Section 3.6). For each bootstrap sample, exactly the same procedure for
choosing smoothing parameters and fitting models was followed as for the original data.
The resulting bootstrap p-value (i.e. the proportion of bootstrap-generated test statistics
exceeding the observed value of 2.207) was 0.272. This is very different from the value
of 0.08 obtained from the approximate F test. Neither p-value is completely accurate:
the performance of the F approximation is likely to be degraded by the seasonal variance
structure in the residuals, and the bootstrap may be affected by the resampling of residuals
from a biased estimate of the null model. Nonetheless, both procedures suggest that the
data structure is described reasonably by an additive model: hence there is little evidence
for seasonal variation in the trends, and the apparent structure in Figure 4.3(c) is primarily
due to sampling variation. �

4.2.4 Handling autocorrelation

The effect of autocorrelation upon parametric regression models has been discussed exten-
sively in Chapter 3. Many of the issues involved (see Section 3.1.1) are essentially the
same in the nonparametric case: if autocorrelation is ignored when fitting models, the
estimates are valid but subject to some loss of precision, standard errors are usually too
small and formal methods of model comparison are likely to be liberal. Opsomer, Wang
and Yang (2001), McMullan, Bowman and Scott (2007) and Bowman, Giannitrapani and
Scott (2009) (see also Chapter 7) review the effects of correlation on standard forms of
nonparametric regression.

As in the parametric setting, a simple way of dealing with autocorrelation is to fit
models in the first instance as though observations are independent, and subsequently to
adjust standard errors and model comparison statistics for the dependence. For example,
the adjustment (3.47) of standard errors for parametric regressions generalises straightfor-
wardly when linear smoothers are used in a nonparametric context: if Sj is the smoothing
matrix for the j th component of an additive model so that the component estimator is
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m̂j = Sj Y, then the covariance matrix of m̂j is

Sj�
−1S ′

j , (4.15)

where � is the covariance matrix of the observations. Standard errors for the individual
smoothed values are given by the square roots of the diagonal elements of (4.15). In prac-
tice, again as in the parametric setting, the covariance matrix � can be estimated by fitting
an appropriate time series model to the regression residuals. For an example of such an
approach, see Giannitrapani et al. (2006). In addition, these authors describe dependence-
adjusted versions of F statistics for comparing nested models; see also Ferguson et al.
(2007) and McMullan, Bowman and Scott (2007).

As in Section 3.3.3, an alternative to adjusting for autocorrelation is to allow for it
explicitly in the model-fitting process. For local linear smoothers, one way of achieving
this starts from the observation that the local least squares criterion (4.3) can be written
in vector–matrix form as

(
y − [

α1 + x∗β
])′

W
(
y − [

α1 + x∗β
])

,

where 1 is a vector of T ones, x∗ is a vector with t th element xt − x and W is a T × T

diagonal matrix with (t, t)th element w (xt − x; h). An analogy with generalised least
squares (see Section 3.3.3) suggests that autocorrelation can be accounted for by replacing
W in this expression with �′W�, where �′� ∝ �−1. This approach is described further
in Chapter 7. It is not the only way to proceed, however; for alternatives, see Cai (2007),
Welsh, Lin and Carroll (2002) and Bowman and Azzalini (1997, Section 7.5). The latter
reference forms the basis for the sm.regression.autocor function in the sm library
for R.

To accommodate the effects of autocorrelation when using spline based smoothers, a
completely different approach can be used. This exploits the mixed model representation
of spline smoothers mentioned in Section 4.1.4. Once the necessary machinery is in place
to fit models within this framework, the addition of an additional layer of correlated
random variables to account for residual dependence is relatively straightforward. The
‘necessary machinery’ referred to is, however, rather technical: see Ruppert, Wand and
Carroll (2003, Section 4.9) and Wood (2006, Section 6.6) for example. The methods
described in the latter reference are implemented in R via the gamm (‘generalised additive
mixed model’) routine in the mgcv library. State space models (Section 5.5) provide
an alternative viewpoint that is arguably slightly more transparent. Bayesian approaches
are also possible; see Fahrmeir and Lang (2001), Fahrmeir, Kneib and Lang (2004) and
Chapter 10 of the present volume.

The discussion above has centred mainly on the effects of autocorrelation upon the
calculation of standard errors and model comparison statistics. In a nonparametric set-
ting, an additional problem arises if one wants to use the data themselves to choose an
appropriate smoothing parameter. Techniques such as cross-validation, for example, tend
to undersmooth because they aim to minimise some measure of prediction error: in the
presence of autocorrelation, the information available for predicting the value of yt is con-
centrated in its immediate neighbours. The issue is discussed in more detail by Bowman
and Azzalini (1997, Section 7.5).

Example 4.4
In the previous example, we fitted a GAM to the monthly mean wind speed series
from De Bilt and noted that some residual autocorrelation was present. In that example,
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where the main aim was to discriminate between additive and bivariate model structures,
autocorrelation and heteroscedasticity were handled using a block bootstrap to deter-
mine the distribution of the F statistic under the null hypothesis of additivity. Here, we
use the same data to illustrate the effect of autocorrelation upon ‘automatic’ procedures
for smoothing parameter selection.

Figure 4.4(a) shows a nonparametric estimate of the trend component in an additive
model similar to that shown in Figure 4.3(a): in fact, the only difference between the two
plots is that in Figure 4.3(a) the cross-validation search was constrained to ensure that
the chosen smoothing parameter was no less than that for the bivariate model illustrated
in Figure 4.3(c): by contrast, in Figure 4.4(a) the search was not so constrained. Notice
that the estimated trend here is less smooth, with a ‘plateau’ in the 1980s.
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Figure 4.4 Trend estimates from the additive model for the logarithms (to base 10) of
monthly mean wind speeds at De Bilt, with smoothing parameters chosen by cross-valida-
tion (a) without accounting for autocorrelation, (b) accounting for autocorrelation using
the gamm routine in R.

As noted above, autocorrelation can lead to undersmoothing if cross-validation is used
to choose a smoothing parameter and, to avoid this, when autocorrelation is present it is
necessary to accommodate it in the fitting process. In panel (b) of Figure 4.4, the same
additive model has been fitted as in panel (a) but now using the gamm routine with the
error sequence (εt ) in (4.12) taken as an AR(1) process (see Section 3.3.3). As expected,
the estimated trend is now smoother: the effective degrees of freedom are reduced from
4.4 in panel (a) to 2.7 in panel (b). The parameter φ of the AR(1) process is estimated as
0.14; this agrees reasonably with the lag 1 residual autocorrelation coefficient of 0.12 in
the previous example. The plateau in the 1980s is no longer present in panel (b). Although
for many applications this difference would be relatively unimportant, it nonetheless
illustrates that if automatic methods are used for smoothing parameter selection, a fail-
ure to account for even weak autocorrelation can lead to visible changes in estimated
model components. �
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4.3 Other nonparametric estimation techniques

The nonparametric methods discussed so far in this chapter have all been based on local
polynomial and spline based smoothers. Although these are appealing and intuitive, there
are many other techniques that may be of use in the context of nonparametric trend
estimation. In this section we briefly review some of these.

4.3.1 Lowess smoothing

One of the most widely used of all nonparametric regression techniques is the locally
weighted scatterplot smoother (lowess) introduced by Cleveland (1979). In R, this is
implemented via the lowess() and loess() functions; the form is a precursor to the
latter, although the two implementations behave slightly differently. Originally designed
for use with a single covariate, lowess has many features in common with local linear
smoothing: the regression function at each covariate value of interest is from a weighted
straight-line fit to the data, with most weight given to ‘neighbouring’ data points. The
main differences between lowess and local linear smoothing are as follows:

• The straight lines are not fitted using weighted least squares, but rather using a
robust estimation procedure (see Section 3.1.5) that aims to reduce the influence of
a moderate number of outlying data points.

• The kernel weight function used to define the ‘neighbourhood’ of each covariate
value of interest is taken to have finite rather than infinite support. The origi-
nal proposal in Cleveland (1979), which has been followed in most subsequent
implementations of the method, is to use the ‘tricube’ kernel

w (xt − x;h) = max

⎛
⎝

[
1 −

∣∣∣∣xt − x

h

∣∣∣∣
3
]3

, 0

⎞
⎠ ;

the notation here is the same as for Equation (4.3).

• The kernel does not have a fixed width, but instead is chosen to include a fixed
proportion of the observations; thus the bandwidth h in the tricube kernel above
should strictly be written as h(x). The kernel will therefore tend to be quite narrow
in regions with a high density of observations, and the estimated regression function
will have a reduced bias in these regions. By contrast, in areas with a low density
of observations the kernel will tend to be rather wide. The bias in these areas
is inevitably increased, but this is arguably a price worth paying since the data
contain little information about the regression function here in any case. In the
context of nonparametric trend estimation, this ‘nearest neighbour’ approach may
be particularly useful for irregularly spaced series.

As a result of the robust estimation procedure used in lowess, formal statistical infer-
ence (for example to construct standard errors and to test hypotheses about the regression
function) is more difficult than for the linear smoothers studied earlier in the chapter.
Perhaps for this reason, neither of the two implementations in R provides standard errors
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or variability bands for the estimated regression function. These implementations are
therefore perhaps best viewed as sophisticated tools to assist in the informal interpreta-
tion of graphical displays. The most obvious role for such tools is at the exploratory stage
of an analysis; however, they can also be helpful when examining residuals from a fitted
model, as seen already in Chapter 3 (see, for example, Figures 3.3 and 3.4).

Although lowess was originally designed as a tool for estimating the effect of a single
covariate upon a response, the technique can also be used with multiple covariates, for
example to estimate one of the components of an additive model (in this setting, lowess
estimation would be carried out at the appropriate point in the backfitting algorithm).
For the analysis of time series data, the seasonal – trend lowess (STL) decomposition
(Cleveland et al., 1990) is another example where lowess smoothing has been used to
provide robust estimates of both trend and seasonality; this can be regarded as a modern
development of classical procedures for splitting a series into ‘trend’, ‘seasonal’ and
‘irregular’ components (see Section 2.3.4).

The STL procedure is designed for use with regularly spaced time series where the
seasonal period (i.e. the number of observations, say S, making up a complete seasonal
cycle) is fixed. This allows S seasonal subseries to be defined: for monthly data, these
subseries would consist of all the Januaries, all the Februaries and so on. Given an
initial estimate of the trend, the original data are detrended. The seasonal component
is then estimated by applying a lowess smoother separately to each of the subseries,
reassembling the results into a single series and then high-pass filtering to remove any
remaining trend. Finally, the trend component is updated by subtracting the estimated
seasonal components from the original series and lowess smoothing the result. The process
is iterated to convergence. Notice that by computing the seasonal component separately
for each subseries, the resulting seasonal cycle is not guaranteed to be smooth: Cleveland
et al. (1990) suggest that if this is seen as a problem, the final seasonal component can
itself be smoothed using lowess.

In order to compute seasonal subseries for the STL procedure, clearly the observations
must form a regularly spaced time series. In principle, missing data can be accommodated
in the procedure, although the stl routine in R does not currently allow this. For an
alternative procedure that achieves essentially the same goal and is capable of handling
potentially large numbers of missing observations, see Section 5.5.5.

To use the STL procedure in practice, it is necessary to choose two smoothing param-
eters: one for the seasonal component and one for the trend. Cleveland et al. (1990)
provide some suggestions for how to choose these, based on frequency considerations
such as those outlined in Section 2.3. These suggestions form the basis for the default
settings in the stl routine in R. As a lowess based technique, however, STL is often
used as an essentially exploratory tool: for this purpose a subjective choice of smooth-
ing parameter may be perfectly adequate. In this context it may be helpful to define the
‘effective span’ of a kernel as the range of observations receiving appreciable weight in
the smoothing. For a regularly spaced series the tricube weight function used by lowess
allocates around 90 % (respectively 95 %) of the total weight to observations within 0.6h

(respectively 0.7h) of the time point of interest, so the procedure may be thought of as
averaging over windows of roughly this length.

Example 4.5
Figure 4.5 shows an STL decomposition of the monthly wind speed series from De
Bilt. The top panel shows the original time series and the remaining three panels give the
seasonal, trend and irregular components respectively. The smoothing parameters for both
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the trend and seasonal components have been chosen subjectively, in each case such that
the lowess smoothing window spans 10 years on either side of the time point of interest
(i.e. 21 years in total). As noted above, the procedure thereby gives appreciable weight
only to observations within 6 or 7 years of each time point; a crude interpretation is
therefore that we are averaging roughly over 15-year windows here. This choice ensures
a smooth estimate of the trend, similar to those obtained earlier in this chapter using
techniques such as cross-validation (note that some differences are due to the use of logged
data in the earlier analyses, whereas Figure 4.5 is a decomposition of the untransformed
wind speeds). A similarly large smoothing parameter is chosen to define the seasonal
component; again, this is partly informed here by the earlier analyses, which suggested
that there are no significant changes in the seasonal cycle through time.
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Figure 4.5 STL decomposition for monthly mean wind speeds from De Bilt. Units on all
plots are m s−1.

The grey bars at the right-hand end of each plot are all the same height and therefore
give an impression of the relative magnitudes of the different components: for example,
the trend accounts for a very small proportion of the overall variation.

Overall, given our earlier analyses of these data, the STL decomposition reveals
little that is new. Note, however, the suggestion of two winter peaks in the estimated
seasonal cycle throughout a large part of the record. Of course, formal methods would
be required to determine whether this feature represents anything more than sampling
variation. In particular, its apparent persistence over a period of more than 20 years
should not be overinterpreted, because the seasonal component estimates in successive
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years are constructed from overlapping windows. However, if the feature is genuine then it
probably would not have been picked up by our earlier analyses because they were based
on an implicit assumption that the seasonal cycle in (log) mean wind speeds is smooth.
The STL analysis provides the opportunity to detect such features because the seasonal
component is computed separately for each seasonal subseries, as described above. �

Although the STL technique has been presented here primarily as an exploratory
or descriptive tool, the literature indicates that it nonetheless can be extremely useful
as a means of revealing structure in environmental time series. Applications include the
assessment of trends in water quality (Esterby, 1993), turtle abundance and egg production
(Balazs and Chaloupka, 2004; Chaloupka, 2001), atmospheric ozone (Carslaw, 2005) and
groundwater levels (Shamsudduha et al., 2009).

4.3.2 Wavelets

We have seen that spline smoothers can be regarded as representing an arbitrary smooth
regression function as a sum of contributions from individual basis functions; a similar
idea underlies the Fourier representation of a regularly spaced time series in Section 2.3.
There is a slight difference between the Fourier and spline bases, however, in that the
latter emerges as a representation of the underlying regression function by virtue of the
penalised least squares criterion (4.4), whereas the former provides a direct representation
of the observations y1, . . . , yT via Equation (2.11). Given this property of the Fourier
coefficients, one could ask whether they can be split in such a way that one group defines
an estimate of the regression (i.e. trend) function m(·) in (4.1), whereas the other group
constitutes ‘noise’: indeed, this is essentially the idea behind the development of low-
and high-pass filters for estimating and removing trend in Section 2.3. Formally, given a
regularly spaced time series and set of basis functions {ψj(·)} such that yt = ∑

j cjψj (t)

for each t , one might consider estimating the trend function as

m̂(t) =
∑
j∈C

bjψj (t),

where C denotes the set of indices corresponding to the trend.
In general, however, the Fourier basis is a poor choice for this purpose, since each

of the individual sine and cosine functions has support on the entire range of covariate
values: this makes it difficult to represent local features in the regression function without
using a large number of Fourier coefficients. This is undesirable since each coefficient
itself will be influenced by the noise (εt ) as well as the regression function: thus the need
for a large number of coefficients will in general lead to an estimator with high variance.

Of course, the Fourier basis provides a parsimonious description of a sinusoidal or
periodic regression function. Similarly, the polynomials of degree 0 to degree T − 1 pro-
vide a basis for the observations y1, . . . , yT : this basis provides a parsimonious description
of trends that are well approximated by low-order polynomials, since in this case one needs
to extract just the first few coefficients in the basis representation. In general, however,
in a nonparametric regression context one is unable or unwilling to specify a particular
form for the underlying regression. The question thus arises: Is it possible to find bases
that provide relatively parsimonious descriptions of a wide range of regression functions?

At the risk of offending mathematical readers by failing to define exactly what is
meant by ‘a wide range of regression functions’ (for details, see Donoho et al. 1995), the
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answer to this question is ‘yes’. The bases in question are known as wavelet bases, since
the constituent functions can be regarded in some sense as ‘local’ versions of the sine and
cosine waves used in a Fourier representation. We here give a very heuristic summary
of the main ideas. For a more detailed introductory account, see Sadiku, Akujuobi and
Garcia (2005) or Nason and Silverman (1994); the latter also serves as a reference for
the R package wavethresh (Nason, Kovac and Maechler, 2009), which can be used to
implement the methods described below. Those wishing to go beyond mere dilettantism
should consult book-length treatments such as Nievergelt (1999), Percival and Walden
(2000) or Nason (2008).

Each constituent function in a wavelet basis is defined so as to correspond roughly
to fluctuations at a specific time point and temporal scale or ‘resolution’. To emphasise
this, they are usually written with a double subscript: {ψjk}, say, where j and k are
the ‘resolution’ and ‘time’ indices respectively. The basis function representation of the
original series is therefore

yt =
∑

j

∑
k

cjkψjk(t). (4.16)

To guarantee that this representation is valid and unique, the wavelet bases discussed here
are constrained to be orthonormal; i.e. the functions {ψjk(·)} satisfy

∫
ψ2

jk(t)dt = 1 and∫
ψjkψj ′k′(t)dt = 0 for (j, k) �= (j ′, k′). A further feature is that each function is a scaled

and shifted version of a ‘mother wavelet’ ψ(·): specifically, ψjk(t) = 2j/2ψ(2j t − k);
some examples are shown in Figure 4.6. The mother wavelet has compact support (i.e.
is nonzero only over a finite range), in an attempt to ensure that the individual {ψjk(·)}
are associated with specific time intervals. Specifically, ψjk(·) can be thought of as cor-
responding to an interval of length T/2j ending at time kT /2j , whence a large value of
|cjk | in (4.16) suggests that there is some important structure in the vicinity. The cor-
respondence is often rather approximate, however, because individual wavelets tend to
extend for some distance outside this nominal interval. This is illustrated in Figure 4.6,
where the grey band indicates the location of the interval relative to the specific wavelets
illustrated there.

Perhaps surprisingly, it is not necessary to evaluate the wavelets themselves to
calculate the coefficients {cjk}: indeed, many of the wavelets in current use do not
have an analytical representation and are defined only indirectly. The discrete wavelet
transform (DWT) of a time series is usually computed by a succession of filtering
operations in which, starting with the finest resolution, a high-pass filter is used to
extract T/2 wavelet coefficients and a companion scaling filter is used to define what
is effectively an aggregated series of T/2 scaling coefficients . The choice of wavelet
determines the filter weights for both the wavelet and scaling filters; the length of these
filters (i.e. the number of nonzero weights), L, say, is always an even number. Taking
the scaling coefficients as data, the operation is then repeated to obtain wavelet and
scaling coefficients at the next resolution. At each resolution, the total number of wavelet
and scaling coefficients is always T .

Clearly, if T is a power of two then the successive aggregation into coarser-resolution
series will ultimately yield a single number (this is interpretable as an overall mean level).
In fact, this constraint on the series length is required by most wavelet software since
this enables the use of a fast algorithm, due to Mallat (1989), for computing the DWT.
Of course, this requirement is rarely met in practice: to use wavelet methods, therefore,
it is usually required to pad out the ends of the series to the required length, for example
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Figure 4.6 Examples of mother wavelets from two of the families proposed by Daubechies
(1988). L denotes the length of the associated filter. The grey band indicates the nominal
support of each wavelet.

using some of the schemes suggested in Section 2.3.3. Further modification is required
to ensure that the filters can be applied at the ends of the series: this is usually done
by extending the data either periodically or by reflection (for example by appending the
values yT −1, yT −2, . . . to the series as necessary). Clearly, this will affect the interpretation
of the wavelet coefficients at both ends of the series and will have a greater effect for
long filters than for short ones. At the coarsest resolutions where the filtering operations
are carried out on short, highly aggregated series, the end effects can be substantial.

The requirements of orthonormality, compact support and high-pass filtering impose
constraints on the choice of function to act as a mother wavelet ψ(·). However, some
freedom remains, perhaps most obviously in the filter length L. As just discussed, longer
filters are more likely to suffer from edge effects; however, they also have more flexibil-
ity and hence can in principle be designed to handle specific structures of interest more
accurately. For example, Figure 4.6 illustrates members of the ‘extremal phase’ and ‘least
asymmetric’ wavelet families of Daubechies (1988). These families have the property that
for a filter of length L, information on polynomial trends of degree up to L/2 is concen-
trated entirely in the wavelet coefficients that are unaffected by end effects (Craigmile,
Guttorp and Percival, 2004). In practice, this means that polynomial trends would mani-
fest themselves primarily as large wavelet coefficients at the coarsest resolutions. This is
entirely consistent with our view of trends as corresponding to low-frequency features.

Since the operations required to compute the wavelet coefficients are all linear filters,
the coefficients themselves can be regarded as a linear transformation of the data: c =
Wy, say, where c denotes the vector of all the wavelet coefficients (together with the
single scaling coefficient representing the overall mean) and W is a T × T matrix. The
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orthonormality of wavelet bases ensures that W ′W = I T , the T × T identity matrix: thus
W ′ is the inverse of W and the original data can be reconstructed from the wavelet
coefficients as y = W ′c̃.

We can now return to the problem of trend estimation. Noting that information on
trends is likely to be concentrated in the coarse-resolution wavelet coefficients, one possi-
bility would be to modify the coefficient vector c by setting to zero the coefficients at all
but the coarsest resolutions, and then carrying out the inverse DWT: m̂ = W ′c̃, say, where
c̃ denotes the modified coefficient vector and m̂ is the estimate of the trend function. How-
ever, such an approach would fail to pick up features at finer resolutions that may also
be of interest: for example, a changepoint or discontinuity (see Sections 3.4.3 and 4.3.4)
would be expected to give rise to large wavelet coefficients at several resolutions, near
the time point at which the discontinuity occurred. As an alternative, therefore, we may
choose to set to zero all wavelet coefficients with magnitudes below some threshold and
to reconstruct the trend estimate from the remaining coefficients. A further refinement,
essentially acknowledging that the noise (εt ) affects all wavelet coefficients including
those influenced by the trend, is to shrink the remaining coefficients towards zero as well.
In this case, the kth modified coefficient at resolution j is

c̃jk = sign
(
cjk

) × max
(∣∣cjk

∣∣ − ccrit, 0
)
, (4.17)

where ccrit is the chosen threshold. This idea is known as wavelet shrinkage, and the
scheme (4.17) is referred to as soft thresholding .

To use wavelet shrinkage in practice, it is necessary to choose the threshold ccrit: this
plays exactly the same role as the smoothing parameter or bandwidth in other nonpara-
metric estimation procedures. Based on ideas of minimising some measure of expected
estimation error for a wide variety of regression functions, Donoho and Johnstone (1994)
proposed the use of a universal threshold : ccrit = σ̂

√
2 log T , where σ̂ is an estimate of

the error standard deviation in (4.1), which is assumed constant. Nason (1996) suggested
a cross-validation procedure (the usual ‘leave-one-out’ cross-validation cannot be applied
directly in a wavelet analysis, because after omitting an observation the sample size is no
longer a power of two), although as usual this does not perform well in the presence of
autocorrelation; threshold selection for correlated sequences is considered by Johnstone
and Silverman (1997). Alternatively, one may use different thresholds at each resolution
level j (Donoho et al., 1995). In the context of a trend analysis, it may be appropriate to
set a threshold of zero for all coarse-resolution coefficients so that any low-frequency com-
ponents are automatically included in the trend estimate, and to apply wavelet shrinkage
only at the finer resolutions. In R, wavelet shrinkage is implemented in the wavethresh

package already mentioned, as well as in the waveslim library (Whitcher, 2007).

Example 4.6
To illustrate the application of wavelet shrinkage in a trend analysis context, we consider
once again the monthly mean wind speed series from De Bilt. As in Section 4.2, we work
with logarithms to stabilise the variance. The series runs from 1961 to 2002 and hence
contains 42 × 12 = 504 monthly observations. This is fortuitously close to a power of
two: for the purpose of the wavelet analysis, therefore, four additional values have been
appended at each end to yield a series of length T = 512 = 29. In view of the strong
seasonality in the series, the observations for September to December 1961 have been
appended to the start and those for January to April 2002 to the end. This should avoid
undue distortion in the results.
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Figure 4.7(a) shows the wavelet coefficients for the padded series; each ‘row’ should
be interpreted as a time series plot of the coefficients at the corresponding resolution level.
The wavelet used here is of the Daubechies ‘least asymmetric’ class with filter length
L = 16 (solid curve in Figure 4.6). The finest-resolution wavelet coefficients (level j = 8)
are shown at the bottom of the plot; there are T/2 = 256 of these, each corresponding
roughly to a 2-month period. There is little obvious structure at this resolution, except
possibly for a single large negative coefficient towards the end: this presumably indicates
a large change in wind speed in two successive months around the corresponding time. In
general, the coefficients at most other levels are similarly uninteresting. At levels j = 6
and j = 5, however, visually at least the coefficients display some regularity. This is due to
the seasonality in the data: these levels correspond to structures on scales of roughly 8 and
16 months respectively. It is a slight disadvantage of the wavelet approach that the seasonal
cycle cannot be resolved explicitly here because the cycle length is not a power of two.
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Figure 4.7 Wavelet analysis of monthly wind speeds at De Bilt: (a) wavelet coefficients
based on a Daubechies least asymmetric wavelet of length L = 16, (b) trend estimates
using wavelet shrinkage for two different wavelets. Grey points indicate data values.

The seasonality in the series creates potential problems for trend estimation using
wavelet shrinkage if the same threshold is used at all resolution levels. The many large
coefficients at level j = 6 are associated with seasonal variation rather than trend, and
these should not be allowed to influence the results unduly. In this situation it may be
preferable to use resolution-dependent thresholds, so that a coefficient at level j will only
be retained if it is large relative to the typical values of other coefficients at that level.
Moreover, as indicated above, it is probably worth keeping all of the coarse-resolution
coefficients. The solid line in Figure 4.7(b) is the estimated trend obtained by soft-
thresholding, with a separate threshold for each of levels 3 to 8 and leaving levels 1
and 2 unchanged; the analysis has been carried out using the wavethresh library in
R. The dashed line shows an estimate obtained in the same manner but using a differ-
ent wavelet. Apart from end effects, the two estimates are broadly similar, although this
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second estimate is not as smooth as the first: this reflects the differences in the mother
wavelet shapes shown in Figure 4.6. The solid curve displays a local irregularity in the
mid 1990s: this is due to the single large coefficient at resolution level 8 that was noted
in Figure 4.7(a). Although this irregularity is of limited interest in the current context (it
can probably be attributed either to sampling variability or to an outlier in the data), it
does illustrate that wavelet shrinkage provides the opportunity to detect local features that
could be smoothed away using other approaches. If a trend estimate is required that does
not include this feature, this can be achieved by setting to zero all of the finest-resolution
wavelet coefficients.

Apart from the irregularity in the 1990s, the trend estimates in Figure 4.7(b) are
perhaps visually less appealing than the spline and lowess based versions seen earlier
(Figures 4.3 and 4.5): although qualitatively similar (increasing until around 1970 and
declining thereafter), they are less smooth and there is a possibility that end effects may
be causing some bias. It is worth bearing in mind, however, that wavelet shrinkage is
designed to cope with a worst-case scenario: if the analyst suspects that the data may
conceal nasty but genuine structures of unknown form, wavelets provide a robust and
relatively safe way of estimating them. Generality comes at a price however: meth-
ods such as splines, local linear smoothing and lowess are tailored to the estimation of
smooth trends and hence will tend to do a better job if the assumption of smoothness
is justified. �

As in this example, trend estimates obtained from different choices of wavelet will
usually be qualitatively similar, at least so long as the wavelet filter length L is small
compared with the sample size T (otherwise, information on trends may ‘leak’ into
the finer-resolution coefficients as a result of end effects, making it difficult to associate
specific coefficients with the structure of interest). Nonetheless, it may be helpful to assess
whether there are situations in which some wavelets are likely to perform better than
others. Horgan (1999) reports the results of some simulation studies involving different
trend functions and different wavelets, and derives some recommendations regarding the
choice of wavelet and threshold in different settings.

Apart from the use of wavelet shrinkage to estimate trends, an attractive feature
of the DWT is its ability to resolve and identify features in the data at different scales.
However, except at the finest resolutions it is difficult to line up features from a plot such as
Figure 4.7(a) with the corresponding features in the original series. This is partly because
the number of wavelet coefficients halves with each decrease in resolution and partly
because each wavelet also picks up structure falling outside its nominal range of support,
as illustrated in Figure 4.6. If it is of interest to locate specific features as accurately
as possible, it may be preferable to carry out a modified version of the DWT in which
wavelet coefficients are calculated for every time point 1, . . . , T at each resolution level.
The resulting maximal overlap discrete wavelet transform (MODWT) enables features in
the wavelet decomposition to be lined up unambiguously with those in the original time
series; it has the additional advantage that the series length is not restricted to a power
of two. For further discussion of the MODWT, with an application to the analysis of
fluctations in sea level, see Percival and Mofjeld (1997). The technique has also been used
to analyse relationships between different atmospheric time series (Whitcher, Guttorp and
Percival, 2000b), in which context it can be seen as an extension to the cross-correlation
analysis discussed in Section 2.1.5. It is implemented in the waveslim library in R, as
well as in the wavelets library (Aldrich, 2009).
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4.3.3 Varying coefficient models

In environmental systems, relationships between variables may change over time and
throughout the year. To capture such effects in a statistical model, it is necessary to allow
the model parameters to vary over time. This can be achieved using state space methods,
as discussed in Section 5.5.2. Alternatively, varying coefficient models (VCMs) can be
used. In a VCM the covariate effects are modelled linearly but with coefficients that
change smoothly with the values of other variables (Hastie and Tibshirani, 1993). Thus
the linear predictor ηt has the form

ηt = β0 (r0t ) + β1 (r1t ) x1t + · · · + βp

(
rpt

)
xpt . (4.18)

Here, for each j ∈ {0, . . . , p}, rjt is the value of some variable (which may be one of the
other covariates in the model) that affects the regression coefficient of xjt via the smooth
function βj (·)–this can be seen as a form of interaction, as noted by Ruppert, Wand and
Carroll (2003, Section 12.4). The model can, of course, be simplified if required by setting
some of the regression coefficients to be constant; this leads to the class of semivarying
coefficient models (Xia, Zhang and Tong, 2004).

In the present context, the most relevant application of VCMs is to allow the regression
coefficients to depend on the time index t . In this case, the model (4.18) becomes

ηt = β0 (t) + β1 (t) x1t + · · · + βp (t) xpt ,

which has a simple and direct interpretation.

Example 4.7
To represent the classic environmental time series structure of ‘trend plus seasonality’,
one could start by writing down a model of the form

Yt = β0 (t) + β1 (t) cos [2πt − τ (t)] + εt , (4.19)

where here the time index t is measured in years. In this model the smooth term β0(·)
represents the trend and β1(·) is a varying coefficient seasonal term, modelled parametri-
cally via the use of a cosine function. The phase τ (·) of the seasonal cycle is also allowed
to vary smoothly over time.

At first sight, the presence of the time-varying phase in (4.19) suggests that the model
is not a VCM as defined previously. However, using trigonometric identities in the same
way as for the parametric regression models in Section 3.2.1, it is straightforward to show
that (4.19) can equivalently be written as

Yt = β0 (t) + γ1 (t) cos 2πt + γ2 (t) sin 2πt + εt ,

where γ1(t) = β1(t) cos [τ (t)] and γ2(t) = β1(t) sin [τ (t)]. This is a VCM with two vary-
ing coefficients; having fitted this model, the time-varying phase can be reconstructed as
τ(t) = arctan

[
γ2(t)/γ2(t)

]
.

Notice that, by contrast with the additive models of Section 4.2, in this VCM the
seasonal cycle is allowed to vary over time. The STL method, discussed in Section 4.3.1,
is another way of achieving this. �

Estimation and inference for VCMs was initially discussed by Hastie and Tibshirani
(1993), with subsequent developments by Fan and Zhang (1999), Fan and Zhang (2000)
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and Cai (2002). Smoothing parameter selection via cross-validation is considered by
Hoover et al. (1998).

In one sense, VCMs can be viewed as a level in a hierarchy of increasingly complex
model structures. At the bottom of this hierarchy is the additive model (4.13), followed by
the additive semiparametric model (4.14) in which parametric and nonparametric compo-
nents are combined. The VCM represents the next level of complexity, allowing smooth
variation in the parameter vector β. Eilers and Marx (2002) describe a practical modelling
approach that encompasses all of these structures, with a spline based representation of
smooth functions that enables simultaneous estimation of the model components using
penalised likelihood.

4.3.4 Discontinuity detection

In Section 3.4.3 we reviewed a variety of methods for detecting changepoints in envi-
ronmental time series. Those methods were based on parametric models, where the
changepoints corresponded to times at which one or more of the parameters experi-
enced an abrupt change. In a nonparametric setting, clearly it is not meaningful to talk
about changes in parameters. One may nonetheless be interested in the possibility of
discontinuities in regression functions that are otherwise smooth.

There have been several interesting recent developments attempting to tackle this
problem. Whitcher, Guttorp and Percival (2000a) use wavelet methods (see Section 4.3.2)
to study changes in variance in the presence of autocorrelation, whereas Cheng and
Raimondo (2008) develop kernels that are designed to detect changepoints when used
as smoothers. Many other approaches (Bowman, Pope and Ismail, 2006; Hall and
Titterington, 1992; Loader, 1996; Müller, 1992; Qiu and Yandell, 1998) are based on
a simple idea: linear smooths obtained from data to the left and right of a particular
location (i.e. covariate value) will yield similar results if the regression function is
continuous there, but will differ in the presence of a discontinuity. This suggests a
formal procedure to test the null hypothesis of no discontinuities: calculate left and right
smooths at a range of locations and compute some overall measure of the difference
between them. Large values of such a measure indicate the presence of at least one
discontinuity. We now describe a version of this idea due to Bowman, Pope and Ismail
(2006); the procedures are implemented in the sm.discontinuity function of the sm

package in R.
Let m̂L(xt ) and m̂R(xt ) denote the left and right smooths obtained at covariate value

xt ; then a plausible statistic for testing the null hypothesis is

T =
∑

t

[m̂L(xt ) − m̂R(xt )]
2 /Vt ,

where the sum is over all locations at which the left and right smooths are computed
and Vt denotes the variance of m̂L(xt ) − m̂R(xt ) (this can be estimated using techniques
similar to those described in Section 4.1.6). In the presence of autocorrelation the test
statistic may be modified, using ideas such as those discussed in Section 4.2.4. The null
distribution can be approximated using a ratio of quadratic forms, whence a p-value can
be obtained. As usual, it is worth using a significance trace to explore the sensitivity of
results to the choice of smoothing parameter. For an example of this in an environmental
context, see Bates et al. (2011).

The test just described is global, in the sense that rejection of the null hypothesis
indicates merely that at least one discontinuity is present somewhere in the regression
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function. To indicate the discontinuity location(s), it can be helpful to plot the left and
right smooths at each location and to overlay a reference band, centred on the average of
the two smooths and with width 2

√
Vt . Both smooths will fall outside this band where

they differ by more than 2 standard errors: these points can be considered as candidate
discontinuity locations. In practice, if the null hypothesis is rejected then one might
consider that there is a discontinuity at the point with the largest standardised difference,
and then repeat the procedure separately for the observations on either side of this location
to search for further discontinuities. For more details and discussion, see Bowman, Pope
and Ismail (2006).

4.3.5 Quantile regression

So far we have dealt exclusively with models for the conditional expectation of the
response variable Y given a covariate vector x. If we are prepared to make specific
assumptions about the distributional form of the response (for example that it is Gaussian
with a constant variance), then this could be used to make inferences about other aspects of
the distribution, such as the way in which covariates affect specific percentiles. Examples
of applications in which this might be of interest include air pollution (where the higher
percentiles may have a direct impact on human health) or the study of rainfall (where
high percentiles may be associated with the risk of flood defence failure).

If, however, we are unwilling to make specific assumptions about the distribution
of the response variable, then the techniques studied so far provide little information
about aspects other than the mean. In this case, one may consider specifying a regres-
sion style model directly for the quantile(s) of interest. This can be achieved using the
technique of quantile regression (Koenker, 2005; Koenker and Bassett, 1978), which was
first developed by econometricians as an extension to the linear model. Appealing fea-
tures of quantile regression include the flexibility to deal with heterogeneous conditional
distributions and robustness to outliers. Median regression, for example, has often been
proposed as a robust regression method (this is demonstrated below); this is an example
of quantile regression in which the median (i.e. 0.5 quantile) of the response distribution
is modelled. More general quantile regression is a natural extension to this.

A linear quantile regression model takes the form

QY (θ |x) = β
(θ)
0 x0 + β

(θ)
1 x1 + · · · + β(θ)

p xp for θ ∈ (0, 1), (4.20)

where QY (θ |x) is the θ th quantile (i.e. the 100θ th percentile) of the distribution of Y

conditional on x. In (4.20), the coefficients {β(θ)
j } also depend on the quantile θ .

Models such as (4.20) cannot be fitted using methods that require the distribution of
the response variable to be specified in parametric form: quantile regression deliberately
avoids any such specification. Thus neither maximum likelihood nor Bayesian methods
can be used. Furthermore, methods such as least squares are clearly inappropriate. It is
therefore not immediately clear how to estimate the coefficients {β(θ)

j }. The key is to start
by considering the quantiles of a set of data y1, . . . , yT in the absence of covariates. For
simplicity of exposition, we also assume that there are no ties and denote the ordered
data values by y(1) < y(2) < · · · < y(T ). For notational convenience, define y(T +1) = ∞.
Providing θT is not an integer, the θ th quantile (qθ , say) is given by y(�θT �): here, �x�
is the value obtained by rounding x up to the next integer (thus �4.1� = 5 for example).
If θT is an integer, qθ is not uniquely defined: all values in the semi-open interval
[y(θT ), y(θT +1)) are candidates.
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It is not immediately obvious, but qθ can be defined equivalently as the minimiser of
the function

Lθ(q) =
T∑

t=1

(yt − q)
[
θI (yt ≥ q) − (1 − θ) I (yt < q)

]
, (4.21)

where I (·) is an indicator function taking the value 1 if its argument is true and 0
otherwise. To see this, note that for q ∈ (

y(i), y(i+1)

]
we have

Lθ(q) = θ

T∑
j=i+1

(
y(j) − q

) − (1 − θ)

i∑
j=1

(
y(j) − q

)
, (4.22)

with the understanding that the first and last terms are zero for i = T and i = 1 respec-
tively. This is linear in q; thus Lθ(q) is piecewise linear and the overall minimum must
occur at the end of one of the intervals

{(
y(i), y(i+1)

]}
. Furthermore, (4.22) can be used

to show that
Lθ(y(i+1)) − Lθ(y(i)) = [θT − i]

(
y(i) − y(i+1)

)
.

Since y(i) < y(i+1) by definition, it follows that L(q) decreases over intervals where i <

θT , remains constant where i = θT and increases where i > θT . The minimum therefore
occurs at the right-hand end of the last interval with i < θT , i.e. at y(�θT �), which is the
required quantile.

By analogy with (4.21), Koenker and Bassett (1978) proposed to estimate the coeffi-
cients {β(θ)

j } in (4.20) by minimising the expression

Lθ(β) =
T∑

t=1

(yt − qt (β))
[
θI (yt ≥ qt (β)) − (1 − θ) I (yt < qt (β))

]
, (4.23)

where now qt (β) = ∑p

j=0 βjxjt . If the model is specified correctly then, under assump-
tions similar to those underlying the standard theory of maximum likelihood estimation,
it may be shown that the resulting estimates converge to their true values as the sample
size increases. As in Section 3.5.1, however (and for the same reason), some additional
work is required to demonstrate this in the context of a trend analysis where one of the
covariates is the time index.

Notice that if θ = 1/2, corresponding to median regression, (4.23) can be written as

L1/2(β) = 1

2

T∑
t=1

|yt − qt (β)| .

The estimates resulting from median regression are therefore the same as those from
least absolute deviations (LAD) regression (see Section 3.1.5). Thus, in the context of a
trend analysis, LAD regression can be regarded as estimating trends in the median of the
response variable. This connection also explains why median regression can be considered
as robust to outliers.

Standard gradient based numerical optimisation methods cannot be used to minimise
(4.23), because Lθ(β) is not differentiable everywhere (indeed, as with Lθ(q) in (4.21),
it is not even continuous everywhere). However, the minimisation can be formulated
as a linear programming problem for which well-understood algorithms are available.
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Although standard linear programming algorithms can be computationally demanding for
large data sets containing several thousands of observations, alternatives are available for
use in such situations (see Portnoy and Koenker, 1997, for example).

As usual, bootstrap and other resampling methods may be used to obtain confidence
intervals for quantile regression estimates; theoretical alternatives are also available. For
a variety of different approaches to the construction of confidence intervals, see Hao and
Naiman (2007), He and Hu (2002), Koenker and D’Orey (1993), Koenker and Hallock
(2001), Koenker and Machado (1999). Note, however, that as usual most of these methods
assume that the observations are conditionally independent given the covariates, so caution
is required when analysing time series data. Methods for handling autocorrelated series
are so far relatively undeveloped.

As described so far, quantile regression is nonparametric in the sense that it makes no
explicit assumptions about the distribution of the response variable; however, the linear
dependence of the quantiles on the covariates is restrictive. It is also slightly unsatisfactory
if any of the coefficients {β(θ)

j } varies with the quantile θ , since in this case there will
be covariate configurations for which the fitted quantile functions at different thresholds
can cross: this could lead to nonsensical situations such as a modelled lower quartile
exceeding the corresponding median. In practice, such problems are unlikely to occur
within the range of the data used for model fitting, but it is worth being aware of the
potential problem if extrapolation is required.

Recent developments have sought to overcome the restriction of linearity by allowing a
nonparametric specification of the quantile functions themselves; this is a current research
topic in statistics and econometrics. For example, an additive quantile regression model
can be specified, analogously to the usual GAM (see Section 4.2.1), as

QY (θ |x) = α(θ) +
p∑

j=1

g
(θ)
j

(
xj

)
,

where the {g(θ)
j (·)} are assumed to be continuous smooth functions. Of course, semipara-

metric versions can also be defined. Such models can be fitted by minimising a penalised
version of the usual objective function (4.23), the penalty being added to encourage
smoothness in exactly the same way as for spline smoothers (see Section 4.1.3). Koenker,
Ng and Portnoy (1994) propose a slightly different penalty term from that usually used
for smoothing splines; the resulting fitted functions are piecewise linear with knots at the
observed covariate values. As with all nonparametric regression techniques, the results
depend on the choice of smoothing parameter.

The methods described above are all implemented in the quantreg package in R
(Koenker, 2009).

Example 4.8
So far in this chapter, we have used nonparametric regression methods to study trends in
monthly and annual mean wind speeds at De Bilt. However, as noted in Section 1.3.1, the
mean wind speed is not always the most relevant quantity in applications: in determining
the feasibility of a wind energy scheme, for example, potential changes in both the upper
and lower tails of the wind speed distribution are of interest, at a daily (or finer) time scale.
The boxplots in Figure 2.2 provide some indication that, for example, there is substantial
seasonal variation in the upper tail of the daily wind speed distribution at De Bilt but
little variation in the lower tail. Quantile regression provides a useful way of exploring
this further.
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Figure 4.8 shows the results of fitting regression models for the 5th and 95th
percentiles (quantiles θ = 0.05 and 0.95) of the daily wind speed distributions at De
Bilt, using the rqss routine in the quantreg library in R. The fitted models are
semiparametric, taking the form

QY (θ) = α(θ) + g(θ) (t)

+β
(θ)
1 cos

(
2π × day of year

365

)
+ β

(θ)
2 sin

(
2π × day of year

365

)
,

where ‘day of year’ runs from 1 to 365 (ignoring leap years) and t denotes the time index.
The function g(θ) (t) is a smooth term representing trend, and the sine and cosine terms
provide a simple but plausible parametric representation of seasonality, as discussed in
Section 3.2.1. This parametric representation is adopted partly to ease the computation.
Further computational savings have been achieved by fitting to just 10 % of the data:
every 10th observation has been used here. This still leaves 1534 observations for model
fitting, regularly distributed through time and through the year so that accurate estimates
of trend and seasonality can be obtained. To fit each model to these data takes less than
a second on a modern PC. Apart from computational considerations, subsampling the
data also provides a crude means of reducing autocorrelation: in Figure 2.3(d) we saw
that there is very little autocorrelation in daily wind speeds at lags greater than 10 days
(although in any case, autocorrelation is not too much of a problem for the analysis below
because we do not attempt to compute confidence intervals or standard errors, or to allow
the data to determine the smoothing parameter).
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Figure 4.8 Quantile regression fit for 5th and 95th percentiles of daily wind speed dis-
tributions at De Bilt: (a) trend and (b) seasonal component. The points represent the
observations. The trend component is estimated nonparametrically, with the smoothing
parameter chosen by visual inspection.

The smoothing parameter for the trend estimates in Figure 4.8(a) has been chosen
on the basis of visual inspection of the results from several different trial values. These
estimates indicate little change in the 5th percentile of the daily wind speed distribution
over the 40-year period of record; however, there is a striking decline in the 95th percentile
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over the final decade. Clearly, a full investigation of this would require some assessment
of the uncertainty in the estimate, but it is consistent with the recent declining trend in
mean wind speeds that was demonstrated in Sections 4.1.7 and 4.2. Taken together, these
results suggest that the decline in mean wind speeds is at least partly associated with a
reduction in strong winds.

Figure 4.8(b) shows the estimated seasonal cycles in the two chosen quantiles. This
confirms the message from the boxplots in Figure 2.2: seasonality is much more pro-
nounced in the upper tail of of the distribution. However, it also shows that the phase of
the seasonal cycle seems to be different for the two quantiles. Strong winds are seen to
occur more frequently in the first and fourth quarters of the year, which is unsurprising,
but the lowest winds tend to occur towards the end of the year rather than (as one might
naı̈vely expect, at least without a good knowledge of the meteorology of the area) in
the summer months. This demonstrates the capacity for quantile regression to provide
additional insights into the structure of a data set. �

In this example, although quantiles θ = 0.05 and θ = 0.95 are in the tails of the wind
speed distribution, the corresponding wind speeds are not atypical: a wind speed above
the 0.95 quantile of the distribution occurs on average every 20 days. In some applications
it is necessary to study changes in quantiles that are much more extreme than this. In
principle, quantile regression could be used for this purpose; however, by definition there
are typically few data points available to estimate extreme quantiles and the resulting
estimates are therefore likely to be very imprecise. If extreme quantiles are of interest,
alternative approaches may therefore be preferable. These are discussed in Section 6.4.

4.4 Parametric or nonparametric?

Having reviewed a wide variety of parametric and nonparametric representations of trend,
it is natural to ask which is preferable in any given situation. As always, there is a trade-
off. Parametric models make stronger assumptions and hence, when these are satisfied,
potentially lead to more powerful analyses. They also provide the opportunity for extrap-
olation beyond the range of the data where this appears justified: it is not obvious how
to extrapolate meaningfully in a nonparametric setting (see, however, the discussion in
Section 5.5). They yield more precise answers to well-defined scientific questions, if the
questions themselves can be related to the values of parameters in such a model, and
finally the risk of spurious residual structure is reduced (see Section 3.1). However, if the
assumptions of a parametric model break down there is increased risk of misinterpreting
the data. Moreover, nonparametric models offer increased flexibility in the range of struc-
tures that can be represented relatively straightforwardly. Users of both parametric and
nonparametric models can protect against misinterpretation by checking their assumptions
carefully, using techniques such as those introduced in Section 3.1.

With the availability of semiparametric models, it is tempting to suggest using para-
metric representations of relationships where possible (perhaps using techniques such as
those described in Section 4.1.7 to help determine this), and nonparametric models other-
wise. This suggestion is not as helpful as it sounds, however. For example, there are many
time series in which the data cannot be used to distinguish between linear trends with
strongly autocorrelated residuals and highly nonlinear trends that are totally unsuitable
for parametric modelling (see Buckland et al., 2004, Section 5.3 for an example). This is
because persistent departures from a linear trend could be viewed either as a failure of
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the linear assumption or as a general tendency for successive residuals to be very similar.
In such situations, the choice between parametric and nonparametric approaches depends
on the scientific context and in particular on whether the analyst chooses to regard the
fluctuations as an interesting part of the trend or simply as a nuisance. If the former,
nonparametric methods will be necessary; otherwise, it may be more appropriate to use
a linear trend model with autocorrelated error structure. This suggests that the distinction
between parametric and nonparametric trend modelling may not be so clear as it first
appears. We return to this in Section 5.5.
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5

Stochastic trends

Our discussion of trends has so far centred around Equation (3.1), which postulates the
existence of a fixed underlying trend {μt } that is observed imperfectly due to a ‘noise’
component {δt }. This is, however, not the only way in which long-term variation can be
represented. Consider, for example, the series shown by the solid line in Figure 5.1. This
shows a regular oscillating pattern and (possibly) a general upward trend, albeit with an
apparent break in the structure between times 25 and 30. On the basis of the discussion
so far, it may be tempting to model this using a linear trend with a periodic component
(see Section 3.4) superimposed. However, the data were in fact generated by simulating
from the model

Yt = 0.9959Yt−1 − 0.5836Yt−2 + δt , (5.1)

where {δt } is a sequence of uncorrelated standard normal random variables. This dif-
fers fundamentally from any model based on (3.1), in that the variation is controlled
solely through dependence between successive observations rather than through a fixed
underlying trend. A second simulation of the same model (shown as the dashed line in
Figure 5.1) shows similar features, but the timings of peaks and breaks in the structure
are different. The apparent trend can therefore be regarded as stochastic, since it varies
between realisations of the process. In this chapter, we present a variety of models for
representing such ‘stochastic trends’. Potentially, these models can be used either in their
own right to represent the structure in a time series or in combination with (3.1) to repre-
sent structure that is not accounted for by the deterministic trend {μt }. Our discussion is
mostly confined to regularly spaced time series; methods for irregular series are covered
briefly in Section 5.4.

5.1 Stationary time series models and their properties

5.1.1 Autoregressive processes

Model (5.1) is an example of a second-order autoregressive process or AR(2). We
have already encountered the AR(1) as a convenient model for residual dependence
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Figure 5.1 Two simulated time series, each generated from model (5.1).

in Chapter 3. More generally, we could incorporate p previous values in the model
equation to define a pth-order autoregression, or AR(p):

Yt = φ1Yt−1 + · · · + φpYt−p + δt , (5.2)

where φ1, . . . , φp are coefficients and (δt ) is a white noise sequence with variance
σ 2

δ , say.
Figure 5.1 shows that an AR(2) model can produce quasi-cyclical behaviour, but with

the timing of the cycles varying between realisations. Indeed, if we were to generate a large
number of realisations from (5.1), the average values at each time point would be equal
(to zero, for this particular model); furthermore, the variances at each time point would
be equal and the correlations between pairs of values at time points separated by the same
interval would be equal. This is therefore a (weakly) stationary process (see Section 2.1.3).
If, and only if, a process is stationary then it has a theoretical autocorrelation function,
defined at Equation (2.2); it also has a theoretical autocovariance function , defined for
all lags k as γ (k) = Cov (Yt , Yt−k) = σ 2

Y ρ(k), where ρ(·) is the autocorrelation function
and σ 2

Y = γ (0) is the process variance. For a stationary process, the sample ACF r(·)
estimates the theoretical ACF ρ(·). This can be used, in principle, to suggest plausible
models for observed time series.

Not all autoregressive processes are stationary. For example, it can be shown
(Chatfield, 2003, Section 3.4) that the AR(1) process

Yt = φYt−1 + δt

is stationary only if |φ| < 1. This is closely connected with the failure of certain pro-
cedures, for example the Prais–Winsten transformation (3.51), when |φ| ≥ 1. In the



STOCHASTIC TRENDS 173

stationary case, however, the theoretical ACF for the AR(1) process is

ρ(k) = φ|k|.

If 0 < φ < 1, the theoretical autocorrelations decay exponentially towards zero with
increasing lag. If −1 < φ < 0, a similar exponential decay is obtained, but successive
coefficients have opposite signs.

The AR(2) process
Yt = φ1Yt−1 + φ2Yt−2 + δt

is stationary when φ1 + φ2 < 1, φ1 − φ2 > −1 and φ2 >−1. Clearly, then, (5.1) describes
a stationary process. The theoretical ACF for an AR(2) process can take one of two forms,
depending on the values of φ1 and φ2. The first is a mixture of two exponentially decaying
functions:

ρ(k) = AB |k| + (1 − A)C|k|,

for constants A, B and C depending on φ1 and φ2 with |B| < 1 and |C| < 1. The second
is a damped sine wave:

ρ(k) = P |k| sin(Q|k| + R)/ sin(R),

for constants P , Q and R with |P | < 1 (Priestley, 1981, Section 3.5). The latter form
corresponds to a quasi-cyclical process: the AR(2) is therefore often a good starting
point for modelling processes that show apparent periodicity. This was first noted by
Yule (1927), who showed that the AR(2) emerges as a natural model for the motion
of a pendulum subject to random shocks (supplied, in his original example, by a boy
with a peashooter). For this reason, the AR(2) process is sometimes referred to as
Yule’s pendulum .

The conditions for stationarity of the general autoregressive process (5.2) are not
easily stated without introducing concepts that need not concern us here; Chatfield (2003,
Section 3.4) gives the details. When fitting autoregressive models, most software packages
automatically impose constraints on the parameters to ensure that the fitted models are
stationary. The ACF of a stationary autoregression is a sum of components, which may
include both exponentially decaying terms and damped sine waves. For this reason, it
is often difficult to determine the order of an autoregressive process based solely upon
inspection of its ACF. We return to this point below.

If the process (5.2) is stationary, it can be shown that its mean is zero. To obtain a
process, (Y ∗

t ), say, with mean μ �= 0, we simply have to add μ to every observation from
(5.2): Y ∗

t = Yt + μ, so that Yt = Y ∗
t − μ. We therefore find that an AR(p) process (Y ∗

t )

with mean μ can be written as

Y ∗
t − μ = φ1

(
Y ∗

t−1 − μ
) + · · · + φp

(
Y ∗

t−p − μ
) + δt (5.3)

or, rearranging,
Y ∗

t = c + φ1Y
∗
t−1 + · · · + φpY ∗

t−p + δt

with c = μ(1 − φ1 − · · · − φp). The ACF of a process is unaffected by such a shift in
the mean, as should be clear from the definition (2.2).
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5.1.2 Moving average processes

We have seen that stationary autoregressions can produce ‘trend-like’ behaviour, despite
merely describing the dependence between successive observations in a time series.
Another class of models for such dependence is that of moving averages . A zero-mean
moving average process of order q, or MA(q), can be written as

Yt = δt + θ1δt−1 + · · · + θqδt−q (5.4)

where, as usual, (δt ) is a white noise process with variance σ 2
δ . The terminology reflects

the fact that in (5.4) Yt is effectively a weighted average of present and past values of the
underlying white noise sequence. Some authors (and software packages) reverse the signs
of the coefficients when defining a moving average process, writing Yt = δt − θ1δt−1 − · · ·
− θqδt−q . There are good reasons for this; however, we use (5.4) for compatibility with
R. Users of other packages should check which definition is used when fitting models.

All moving average models are stationary (Chatfield, 2003, Section 3.4). A key feature
of any MA(q) process is that its autocorrelations are exactly zero for lags greater than q.
Under ideal conditions, data from such a process should therefore yield a sample ACF
with a (possibly unstructured) sequence of ‘large’ coefficients, followed by a sequence
of small coefficients. In this situation, the cut-off point could be taken as an estimate of
the order q of the process. This contrasts with the behaviour for autoregressive models,
where the autocorrelations approach zero smoothly as the lag tends to infinity.

The mean of the process (5.4) is zero. As before, a process with mean μ can be
obtained by adding μ to every observation:

Y ∗
t = μ + δt + θ1δt−1 + · · · + θqδt−q .

5.1.3 Mixed ARMA processes

Having introduced autoregressive and moving average processes, it is natural to combine
them to form an extended class of autoregressive/moving average (ARMA) processes. A
zero-mean ARMA(p, q) process (Yt ) has the model equation

Yt = φ1Yt−1 + · · · + φpYt−p + δt + θ1δt−1 + · · · + θqδt−q . (5.5)

Stationarity of such a process is determined by the values of the autoregressive coeffi-
cients φ1, . . . , φp. The required conditions are the same as for an ordinary autoregression:
for example, if p = 1, (5.5) defines a stationary process if and only if |φ1| < 1. For a
stationary ARMA process (Y ∗

t ) with mean μ, by analogy with (5.3) the model equation is

Y ∗
t − μ = φ1

(
Y ∗

t−1 − μ
) + · · · + φp

(
Y ∗

t−p − μ
) + δt + θ1δt−1 + · · · + θq.

As might be expected, the ACF of a stationary ARMA(p,q) process behaves as a
combination of the two separate components. In particular, the MA component has no
effect after lag q, so after this stage the ACF behaves exactly as that of an AR(p). For
example, the ACF of the ARMA(1,1) process

Yt = φYt−1 + δt + θδt−1
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has the form

ρ(k) =
{

1, k = 0,

Aφ|k|−1, otherwise,

providing |φ| < 1 (Brockwell and Davis 2002, Section 3.2). This shows exponential decay
as for the AR(1), but starting at lag 1 rather than lag zero.

Extensions of the ARMA family of models are available for series with seasonal
structure; see, for example, Chatfield (2003, Section 4.6), Brockwell and Davis (2002,
Section 6.5) and Kendall and Ord (1990, Chapter 5). However, seasonal cycles in envi-
ronmental series tend not to vary much over extended time periods, whence they are
perhaps best thought of as essentially fixed rather than stochastic. Therefore, the seasonal
ARMA models (at least in their stationary versions) are perhaps not best suited to the
modelling of environmental data. We elaborate on this point in Section 5.1.7.

5.1.4 Model identification

We have briefly introduced some classes of stationary process that may be appropriate
for the modelling of environmental time series and have discussed in qualitative terms
the behaviour of their autocorrelation functions. In principle, therefore, if a sequence of
observations appears roughly stationary then its sample ACF may be used to guide the
choice of an appropriate model from this class. Unfortunately, this is not always easy.
One problem is that, except in very large samples, the sample ACF often resembles
the underlying ACF rather loosely. Firstly, the sample autocorrelations tend to under-
estimate the underlying values, especially at high lags, and, secondly, neighbouring
coefficients in the sample ACF can be moderately dependent, giving a smooth appear-
ance (often appearing as weak oscillation) when such structure is not present in the
true ACF. A good discussion of these issues may be found in Kendall and Ord (1990,
Chapter 6).

Another problem is that, as noted above, many different autoregressive processes have
qualitatively similar ACFs. If an AR process is suspected therefore, the ACF may give
few clues as to its order. In such situations, one could contemplate fitting AR processes
of successively higher order to the data, at each stage noting the value of the final
coefficient. Suppose the true model is AR(p) and an AR(k) model is fitted: then, when
k ≤ p, one would expect to obtain a nonzero coefficient of Yt−k , but when k >p the
coefficient should be close to zero. A plot of the coefficients against the lag k could
therefore be used to identify the order of the process. In fact, it can be shown (Kendall
and Ord, 1990, Section 5.11) that the lag k coefficient defined in this way represents the
correlation between Yt and Yt+k , adjusted for their mutual dependence on the intervening
variables Yt+1, . . . , Yt+k−1. The collection of these coefficients is called the sample partial
autocorrelation function (PACF) and is usually plotted in a similar way to the ACF,
with approximate confidence limits to help judge which coefficients differ ‘significantly’
from zero. If in fact the data are generated from a moving average process rather than
an autoregression, the PACF will typically show smooth decay or damped oscillation
(Kendall and Ord, 1990, Section 5.22). In short, the ACF of a moving average behaves
like the PACF of an autoregression, and vice versa.

Although the repeated fitting of autoregressions sounds cumbersome, it is
perfectly feasible with modern computing power and is used, for example, by the
pacf routine in R. However, the PACF can also be computed directly from the
ACF using the Durbin–Levinson algorithm (Kendall and Ord, 1990, Section 5.19).
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For example, given sample autocorrelation coefficients r(1) and r(2), the first two partial
autocorrelations are

r(1) and
r(2) − r(1)2

1 − r(1)2

respectively. This shows, firstly, that the PACF contains no new information (it merely
reorganises the ACF in a way that is more convenient for some purposes) and, secondly,
that the sample PACF will inherit the propensity of the ACF to behave poorly on occasion.

Example 5.1
Figure 5.2 shows the theoretical autocorrelation and partial autocorrelation functions for
some simple time series models, along with sample versions computed, in each case, from
a simulated series of 40 observations. The top row is for an AR(1) process with parameter
φ = 0.7. For this process the theoretical ACF decays exponentially, and the theoretical
PACF is zero after lag 1. The sample PACF has a spike at lag 1, which is consistent
with the underlying AR(1) mechanism; however, both sample ACF and PACF show quite
pronounced oscillation. If we did not know the true model for this series, the oscillation in
the sample ACF may lead us to conclude that an AR(2) component is present; similarly,
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Figure 5.2 Autocorrelation and partial autocorrelation functions for (top to bottom) an
AR(1), an AR(2) and an ARMA(1,1) process. The points on each plot show the true underly-
ing function for each process; the bars show the sample version computed from a simulation
of length T = 40 .
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the oscillation in the PACF may suggest an MA(2) component as well. This shows clearly
the potential for spurious structure in the sample (partial) autocorrelations.

The sample functions in the remaining rows of Figure 5.2 are rather better behaved.
The second row is for the AR(2) model defined in Equation (5.1) (in fact, the sample
functions here correspond to the series shown as a solid line in Figure 5.1). Both theoretical
and sample ACFs show clear damped oscillation, corresponding to the quasi-periodicity
in this process. The theoretical PACF is zero after lag 2, and the sample version follows
this quite closely.

The final row of Figure 5.2 is for an ARMA(1,1) process. The sample and theoretical
correlation functions are once again in reasonable agreement, although the sample ACF
shows clearly the tendency, mentioned above, for underestimation at high lags. Notice the
difference between the theoretical functions for this model and those for the AR(1) in the
top row. In the ARMA case, the MA(1) component manifests itself firstly via the smooth
decay of the PACF and secondly via the fact that although the ACF decays exponentially
from lag 1 onwards, it shows a discontinuity between lags 0 and 1. �

Given the difficulties in choosing an appropriate ARMA model for a series, a prag-
matic approach is to work initially with the simplest model suggested by the sample
ACF, and to expand this later if this seems necessary based on a residual analysis. If,
for example, the sample ACF shows a large significant coefficient at lag 1 and not much
else, an MA(1) model may be appropriate; if it shows clear oscillation, then an AR(2) is
a natural starting point; and if it shows smooth decay from lag 1 onwards, an ARMA(1,1)
might be used.

5.1.5 Parameter estimation

Having identified, possibly tentatively, an appropriate model for a stationary series, we
turn to the question of parameter estimation. As ever, the large-sample optimality proper-
ties of maximum likelihood make it the preferred estimation method in many applications.
However, the routine fitting of time series models by maximum likelihood has only
become feasible since the 1980s, with the development of efficient algorithms to compute
the likelihood and the availability of sufficient computing power to maximise it numeri-
cally. Prior to this, fitting was often done using least squares, which has close connections
with maximum likelihood in any case. A couple of general issues arise when fitting time
series models using either method. These are perhaps best appreciated in the context of
least squares; accordingly, we deal with this first.

Consider fitting the zero-mean autoregression (5.2) to data y1, . . . , yT . The regression-
like form of the model suggests estimating the parameter vector φ = (φ1 . . . φp)′ by
minimising the sum of squares

S (φ) =
T∑

t=p+1

⎛
⎝yt −

p∑
j=1

φjyt−j

⎞
⎠

2

=
T∑

t=p+1

e2
t (φ) , say. (5.6)

The sum here starts at time t = p + 1, because contributions from earlier time points
depend on unobserved values prior to time 1. Minimising (5.6) is in fact the same as
maximising a log-likelihood obtained by considering the first p observations as fixed
(Chatfield, 2003, Section 4.2; Priestley, 1981, Section 5.4); for this reason, (5.6) is some-
times referred to as a conditional sum of squares . The resulting fitted model is not
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guaranteed to be stationary, although it usually will be if T is large and the data are
indeed from a stationary process.

Least squares estimation is less straightforward in models containing moving average
components. We illustrate this using the MA(1) model

Yt = δt + θδt−1. (5.7)

For data y1, . . . , yT , the least squares estimate of θ should minimise the sum of squares

S(θ) =
∑

e2
t (θ) where et (θ) = yt − θet−1(θ). (5.8)

However, there is a problem. Since e0(θ) is unobserved, the quantity e1(θ) cannot be
calculated. The same is true for e2(θ), and for all the other contributions to S(θ). A
possible solution is to set e0(θ) to a fixed value, say zero (which is the expected value
of δ0). If this is done, S(θ) can be calculated for any value of θ . Notice that, due to the
recursive calculation involved, et (θ) is a polynomial of degree t − 1 in θ and S(θ) is
a polynomial of degree 2(T − 1). In general, therefore, minimising S(θ) must be done
numerically (contrast this with the autoregressive case (5.6), where S (φ) is quadratic in
φ and can be minimised analytically just as in a standard multiple regression model).

It is interesting to examine the implications of fixing e0(θ) when fitting an MA(1).
Let dt denote the realised value of δt corresponding to the data at hand. Then, from (5.7),
we have

dt = yt − θdt−1 = yt − θ (yt−1 − θdt−2) = yt − θyt−1 + θ2dt−2

= · · · = yt +
t−1∑
j=1

(−1)j θj yt−j + (−1)t θ t d0. (5.9)

The same procedure can be applied to et (θ) as defined in (5.8):

et (θ) = yt +
t−1∑
j=1

(−1)j θj yt−j + (−1)t θ t e0(θ). (5.10)

Notice next that at the true value of θ , we should have et (θ) = dt for all t . From (5.9)
and (5.10), the difference between et (θ) and dt is

et (θ) − dt = (−θ)t [e0(θ) − d0] .

If |θ | < 1, this difference tends to zero as t increases. If |θ | = 1, the magnitude of the
difference is always the same, and if |θ |> 1, the difference increases exponentially with t .
The upshot is that if |θ | < 1, only the first few time points are affected to any appreciable
extent by fixing e0(θ). In this case, providing T is large, the effect on estimation of θ

is negligible and the sum of squares (5.8) can be justified as a measure of model fit.
However, if |θ | ≥ 1, then, unless e0(θ) = d0, (5.8) has no meaningful interpretation.

Equation (5.9) gives a clue as to what is happening here. It shows that if |θ | < 1
and t is large, dt can be approximated accurately using a weighted average of the obser-
vations {yt−j : j = 1, . . . , t − 1}, with decreasing weights attached to the more distant
observations. Hence it is, to all intents and purposes, observable. Correspondingly, the
random variable δt can be approximated in terms of Y1, . . . , Yt−1. Notionally at least, this
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approximation can be made exact by continuing the expansion into the infinite past using
the random variables Y0, Y−1, . . . . If this is done, and the result applied to δt−1 instead
of δt , we can substitute into the original model equation (5.7) to obtain

Yt = δt + θ

⎡
⎣Yt−1 +

∞∑
j=1

(−1)j θjYt−1−j

⎤
⎦ =

∞∑
j=1

(−1)j+1θjYt−j + δt .

In doing this, we have effectively ‘inverted’ the moving average model specification into
an autoregression, albeit of infinite order.

In general, for any model containing a moving average component of order q, the
least squares estimation is hampered by not knowing the values of δ0, . . . , δ−(q−1). The
general principle is the same as for the MA(1) process, however: under certain constraints
on the moving average parameters, any such model can be written as an infinite-order
autoregression with negligible weight attached to observations in the distant past. The
model is then said to be invertible, and only the first few contributions to the sum of
squares are affected to any substantial degree by not knowing the initial errors. Invertibility
plays a key role in model fitting and checking, as well as in prediction (see below): it is
therefore important to ensure that fitted models are invertible. In practice this restriction is
not serious, since it can be shown (Priestley, 1981, Section 3.5) that for every noninvertible
model there is an invertible model with the same ACF. It is at first sight remarkable that
the constraints required to ensure invertibility are essentially the same as the corresponding
stationarity conditions for autoregressive processes, although for moving average models
defined as in (5.4) the signs of the coefficients must be reversed in the constraints. For
example, the invertibility condition for the MA(1) process is |θ | < 1; the conditions for the
MA(2) process are θ1 + θ2 >−1, θ1 − θ2 < 1 and θ2 < 1. For more details, see Chatfield
(2003, Section 3.4) and Brockwell and Davis (2002, Chapter 3).

Having dealt with least squares estimation, we can tackle maximum likelihood. Strictly
speaking, we should refer to ‘Gaussian’ maximum likelihood, since the standard tech-
niques for likelihood based fitting of time series models all assume that the error process
(δt ) is normally distributed. In this case, providing the process is stationary, the {Yt } are
also normally distributed, and indeed the entire observation vector Y has a multivariate
normal distribution. This follows from the representation of (Yt ) as a general linear pro-
cess , in which each observation can be written as a linear combination of terms in the
error process (Chatfield, 2003, Section 3.4).

Recall from Section 3.5 that a likelihood is obtained by writing down the joint
probability density function of the data, and treating this as a function of the model param-
eters. The density of a T -variate normal distribution with mean vector μ and covariance
matrix � is

f (y) = (2π)−T/2 |�|−1/2 exp

[
−1

2
(y − μ)′ �−1 (y − μ)

]
, (5.11)

where |�| is the determinant of �. For the stationary models considered here, � contains
the autocovariances (see Section 5.1.1) and has a Toeplitz structure (see Section 3.3.3).
The autoregressive and moving average parameters determine the autocovariance structure
and hence affect the covariance matrix �, but not the mean vector μ. For these models, by
definition the elements of μ are all equal to the process mean μ. In applications, however,
it can be useful to allow the elements of μ to vary, for example to allow dependence of
Yt upon covariates as in the regression models of Chapter 3. Of course, in this case the
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process (Yt ) is no longer stationary; however, if we define Ỹt = Yt − μt then the process
(Ỹt ) is. The interpretation is that after removing any deterministic component μ, we are
left with a zero-mean process that can be represented using a stationary time series model.
Such series are sometimes referred to as trend-stationary . If we allow μ to vary and to
depend on a parameter vector β then the likelihood is a function of β, along with the
autoregressive parameter vector φ, the moving average parameter vector θ and the error
variance σ 2

δ . From (5.11), we see that the log-likelihood given data y is

	
(
β,φ, θ, σ 2

δ ; y
) = −T

2
log (2π) + log

(|�|−1/2) − 1

2
(y − μ)′ �−1 (y − μ) . (5.12)

Notice that β enters here only through the mean vector μ. Therefore, for fixed values
of the other parameters, maximising (5.12) with respect to β is equivalent to minimis-
ing (y − μ)′ �−1 (y − μ) = ỹ′�−1ỹ, say. However, this has exactly the same form as
the generalised least squares criterion (3.50). This justifies our earlier claim that GLS
delivers maximum likelihood estimates of regression coefficients under the assumption
of normality.

In general, (5.12) cannot be maximised analytically and numerical methods must
be used. However, given reasonable starting values (which may be obtained from a least
squares fit, for example) and a good modern optimisation algorithm, this is not a problem.
The only cause for concern is the amount of computational effort required to calculate
the log-likelihood at (possibly many) different parameter values, since the number of
floating point operations required to evaluate the determinant and inverse of a T × T

matrix is usually roughly proportional to T 3 (Monahan, 2001, Chapter 3). Fortunately,
however, for the models considered here the cost of evaluating |�| and �−1 can be
reduced substantially. The means of achieving this can be regarded as a generalisation of
the Prais–Winsten transformation (see Section 3.3). We proceed by defining a series of
innovations h1, . . . , hT :

ht =
{

Ỹt , t = 1,

Ỹt − ∑t−1
j=1 wj,thj , otherwise,

(5.13)

where the ‘weights’ {wj,t }, which depend on the parameter vectors φ and θ , are cho-
sen in such a way that the innovations are mutually uncorrelated. Specifically, we have
wj,t = Cov(Ỹt , hj )/Var(hj ) (Eubank, 2006, Section 1.2.2). Although the details are rather
complicated, for the class of models considered here the innovations algorithm provides
an efficient means of computing the (ht ) and their variances for any parameter values
(Brockwell and Davis, 2002, Sections 2.5.2 and 3.1 to 3.3): the total number of floating
point operations required is roughly proportional to T . This algorithm does require, how-
ever, that no observations are missing. The innovations can alternatively be calculated
by writing the models in state space form (see Section 5.5) and using the algorithm of
Gardner, Harvey and Phillips (1980). This approach, which is used in the R routine arima,
handles missing observations exactly and the computational cost is again proportional
to T . Either way, routine evaluation of the innovations, and their variances, at many
different parameter values is feasible for long time series with modern computing power.
We now show how this relates to (5.12).

According to (5.13), ht is a linear combination of the mean-corrected variables
Ỹ1, . . . , Ỹt , with a unit coefficient of Ỹt . Therefore, we can write the vector of inno-
vations as h = AỸ for some lower triangular matrix A with diagonal elements all unity.
Since Ỹ is multivariate normal (MVN) with zero mean, h is too: h ∼ MVN(0, V ), say,
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where V is a diagonal matrix since the innovations are uncorrelated. Conversely, we can
write Ỹ = A−1h (the structure of A guarantees the existence of its inverse). Using standard
results for the multivariate normal distribution (e.g. Flury, 1997, Section 3.2; Krzanowski,
1988, Section 7.2), we find that Ỹ ∼ MVN(0, A−1V [A−1]′). However, we already know
that Ỹ ∼ MVN(0,�). We must therefore have � = A−1V [A−1]′ and �−1 = A′V −1A.

With this factorisation, the quadratic form in (5.12) can be written as

Ỹ′�−1Ỹ = [
AỸ

]′
V −1AỸ = h′V −1h =

T∑
t=1

h2
t /vt ,

where vt = Var(hj ) is the t th diagonal element of V . Moreover, the determinant |�|−1/2 is
given by |A|/√|V | = 1/

√|V | (A is lower triangular, so its determinant is just the product
of its diagonal elements, which are all unity) and V is diagonal so |V | = ∏T

t=1 vt . Putting
all this together, (5.12) becomes

	
(
β, φ, θ , σ 2

δ ; y
) = −1

2

T∑
t=1

[
h2

t

vt

+ log vt + log (2π)

]
, (5.14)

where, in a slight abuse of notation, ht is the ‘observed’ innovation calculated from
the data y. We have therefore succeeded in writing the log-likelihood in terms of the
innovations and their variances, all of which can be computed relatively cheaply.

We have already hinted at a connection with the treatment of GLS estimation in
Section 3.3. Indeed, the matrix � used there is proportional to V −1/2A in the current
context. The elements of V −1/2 are therefore proportional to the diagonal elements of
�, and A is obtained by dividing each row of � by its diagonal element. For the AR(1)
process, � is given by the Prais–Winsten matrix (Equation (3.51)). All of its diagonal
elements except the first are already unity; the matrix A for this model is therefore identical
with � except in the first row. This shows that for t > 1 in this model, the innovation ht is
simply the residual et = Ỹt − φỸt−1; for t = 1 the innovation is h1 = Ỹ1. For t = 2, . . . , T ,
the variances {vt } are all equal; v1 is scaled by a factor 1/(1 − φ2). Maximising the log-
likelihood (5.14) is therefore almost identical with minimising the sum of squares (5.6):
the only difference is due to the t = 1 term in (5.14). However, including this term has an
important consequence since, with v1 proportional to 1/(1 − φ2), log v1 tends to infinity
as φ2 tends to 1, and therefore the log-likelihood tends to −∞. Furthermore, log v1, and
hence the log-likelihood, is undefined when φ2 > 1. Therefore, the maximum likelihood
estimator must lie between −1 and 1, and automatically satisfies the stationarity conditions
for the model.

These conclusions hold quite generally (Brockwell and Davis, 2002, Section 3.3). For
an AR(p) process, when t >p the innovation ht is the residual et = Ỹt − ∑p

j=1 φj Ỹt−j

and the variances vt are all constant; the first p contributions to the log-likelihood are
different and ensure that the maximum likelihood estimators automatically correspond
to a stationary process. This can be checked for the AR(2) process using the form of
the � matrix given by Barry, Burney and Bhatti (1997). For models including a moving
average component, apart from the first few time points the innovations can be interpreted
as ‘approximate residuals’ (see the next section) providing the model is invertible; in this
case, the innovation variances {vt } tend to a constant limit as t increases.

When using maximum likelihood, all of the usual methods are available for examining
and comparing models. For example, approximate standard errors can be computed for
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the parameter estimates, which in principle enables the significance of each term to be
assessed using a t statistic. Notice, however, that the time series models considered here
are effectively regression models with correlated covariates; the usual warnings apply,
therefore, regarding the interpretation of t statistics in such situations (see Section 3.2).
For this reason, in time series perhaps more than in other fields, the use of other likelihood
based model selection criteria such as AIC is widespread.

We conclude this section by pointing out a connection between the time series log-
likelihood (5.14) and the general expression (3.65) for the log-likelihood of a dependent
sequence of observations. The latter is a sum of terms, with the contribution at time t

corresponding to a conditional distribution given all previous observations. This is exactly
the form of (5.14): here, the contribution at time t is the logarithm of a normal density that
represents a conditional distribution. The variance of this normal density is vt ; the mean
is zero for t = 1 and

∑t−1
j=1 wj,thj as defined in (5.13) otherwise: this is the expected

value of Ỹt given the previous observations.

5.1.6 Model checking

As with the regression based models of earlier chapters, diagnostics for time series models
are usually based on residuals. The construction of these residuals is, however, slightly
more complicated in the present setting.

In the previous subsection we saw that, under the assumed model, the innovation
vector h has zero mean and a diagonal covariance matrix. Furthermore, it follows from the
discussion above that for a pth-order autoregression, if the parameter values φ1, . . . , φp

are known then the innovation ht is simply the white noise term δt for t > p. This suggests
that, in general, the innovations from a fitted model, which emerge naturally from the
fitting algorithm, are closely connected with the sequence (δt ) and will form a useful
basis for diagnostics. For models involving a moving average component, this connection
relies additionally upon the invertibility of the model, as might be expected from the
discussion following Equations (5.9) and (5.10). As far as diagnostics are concerned,
one problem with the innovations is that their variance is not constant: this is why they
were described previously as ‘approximate residuals’. However, since the variances {vt }
are also calculated during the fitting of the model, it is straightforward to standardise
each innovation according to its own standard deviation: e∗

t = ht/
√

vt , say, to generate a
sequence of uncorrelated residuals with zero mean and unit variance, or et = σδe

∗
t for a

sequence of uncorrelated residuals on the same scale as (δt ). We refer to {et } and {e∗
t } as

residuals and standardised residuals respectively.
In practice, of course, the model parameters are not known, so the residuals are not

exactly equal to the underlying white noise sequence, even in the case of a correctly
specified autoregression. Essentially the same issue arose when discussing diagnostics
for the linear trend model in Section 3.1. However, as in the linear trend case, it seems
intuitively reasonable that for a well-chosen model the residuals should behave more or
less like a white noise sequence, and hence that all of the diagnostic techniques introduced
in Chapter 3 can be applied to check for unexplained structure. A formal justification
for this assertion is possible (Brockwell and Davis, 2002, Section 5.3). Therefore, for
example, a time series plot of residuals can be used to check for unexplained trends and
a residual correlogram can be used to check for autocorrelation that is not captured by
the model.

When any correlogram is calculated, the usual 95 % limits defined in Section 2.1.3
provide a rough guide as to whether an individual coefficient may be considered
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significantly different from zero. However, in general this tells only part of the story.
For example, if the residual autocorrelations all lie within the limits but several of them,
at consecutive lags, are ‘almost significant’, one might suspect the presence of genuine
(albeit weak) residual autocorrelation that has not been accounted for. It can therefore be
useful to try and summarise the entire residual correlogram, as an alternative to focusing
on individual coefficients. One way to proceed is via the Ljung–Box–Pierce statistic,
defined for any lag m as

Q(m) = T (T + 2)

m∑
k=1

r2
e (k)

T − k
,

where re(k) is the residual autocorrelation at lag k. If a fitted ARMA(p, q) model
with p, q ≥ 0 is correctly specified, the distribution of Q(m) can be approximated by
a chi-squared distribution with m − p − q degrees of freedom (Kendall and Ord, 1990,
pages 111–112). This can be used as the basis for a test of the null hypothesis that the
underlying residual ACF is zero at lags 1 through m. Such a test is sometimes called a
portmanteau test . In R, the tsdiag command plots the p-values from this test for differ-
ent values of m, as well as producing a time series plot of the standardised residuals and
their ACF.

As with the linear regression models discussed in Chapter 3, the normality assumption
is not critical to the estimation of parameters in time series models: maximising the Gaus-
sian likelihood of the previous subsection is often a reasonable procedure even when this
assumption does not hold. However, normality becomes much more important if different
models are to be compared using criteria based on the likelihood function itself. Such
criteria include the AIC (see the definition in Section 3.2.3). When fitting time series
models many software packages, R included, calculate AIC values based on the assump-
tion of normality. A normal quantile–quantile plot of the residuals (see Section 3.1.1)
can provide a guide to the appropriateness of such calculations.

Example 5.2
To illustrate the application of the ideas discussed so far, we return to the haddock biomass
example of Section 1.3.2. In Section 3.1, we fitted a linear trend model to the logarithms of
the biomass series and found substantial autocorrelation, with a possible cyclical structure,
in the residuals from this model. The periodogram analysis in Section 3.4 suggested that
the residual structure could not be represented adequately using a simple periodic function.
It may therefore be of interest to see if the residuals can be represented using one of the
time series models introduced here.

To identify an appropriate model for the residuals, their sample ACF and PACF can
be used. The ACF was shown in Figure 3.1(c). The PACF is not shown here; it looks
very similar, however, to the sample PACF of the AR(2) process in Figure 5.2, with
significant coefficients at the first two lags and little else thereafter. This structure in the
PACF, together with the pronounced oscillation in the ACF and in the residual time series
itself, suggests that in the first instance we might try to model the residuals as an AR(2)
process. In principle, this could be achieved by taking the residuals as data in their own
right and fitting an AR(2) model to them. However, this would fail to account for the
fact that the slope and intercept of the trend line have already been estimated and that the
calculation of residuals is a form of preprocessing that should ideally be accounted for
(see the discussion of this in the context of multiple regression models in Section 3.2).
As an alternative, therefore, we note that if the residuals form an AR(2) process then a
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model for the log biomass data (Y ∗
t ) themselves can be written as

Y ∗
t = β0 + β1xt + εt ,

where εt = φ1εt−1 + φ2εt−2 + δt ,
(5.15)

and (δt ) is a white noise sequence with variance σ 2
δ . This is an example of a trend–

stationary model, where the trend is μt = β0 + β1xt ; hence maximum likelihood estimates
of the parameters can be obtained using the method described in the previous subsection.
This method is implemented in the arima command in R; the results are summarised in
Table 5.1 and the diagnostics from the tsdiag command are shown in Figure 5.3.

Table 5.1 Edited R output for model (5.15) fitted to
haddock biomass data.

Coefficients:

ar1 ar2 intercept Time

0.9959 -0.5836 5.9768 -0.0341

s.e. 0.1551 0.1492 0.1762 0.0078

sigma^2 estimated as 0.08824

log likelihood = -8.46, aic = 26.92
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Figure 5.3 Diagnostic plots, produced in R using the tsdiag command, for model
(5.15) fitted to haddock biomass data. Top to bottom: time series plot of standardised
residuals, ACF of residuals and p-values for the Ljung–Box–Pierce portmanteau test at
lags up to 10.
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Focusing first on Figure 5.3, the standardised residuals in the top plot show no obvious
trends (and, by contrast with the residuals from the original model in Section 3.1, the
first observation no longer appears as an outlier). More interestingly, the residual ACF
now shows virtually no autocorrelation. This impression is confirmed by the p-values
for the Ljung–Box–Pierce portmanteau test: since all of these are well above the critical
value of 0.05, there is no evidence to reject the null hypothesis that the underlying residual
correlations are all zero, at least up to lag 10. It therefore seems that we have finally found
a model that accounts for the structure in these data. A final check is to carry out a formal
comparison of the new model with the original. The AIC for the new model is given in
Table 5.1 as 26.92. That for the original can be computed, using the AIC command in R, as
49.79. This confirms the superiority of the new model, if such confirmation were needed.

Having established that the model appears to describe the data adequately, we can
proceed to interpret the results. Comparing each of the parameter estimates in Table 5.1
with their standard errors, all of the estimates differ significantly from zero at any rea-
sonable level of significance. The estimated trend line is very similar to that from the
original model in Table 3.2 (the estimated intercept has reduced from 6.058 to 5.977 and
the slope has increased from −0.037 to −0.034); however, the standard errors associated
with the regression coefficients have both increased by around 20 %. These results are as
expected from the general discussion in Section 3.1.1.

Table 5.1 also shows the estimates of the autoregressive parameters: φ̂1 = 0.9959 and
φ̂2 = −0.5836, and the residual variance is estimated as 0.08824. The fitted model for
the deviations from the trend line is therefore

εt = 0.9959εt−1 − 0.5836εt−2 + δt

with Var(δt ) = 0.08824. Apart from the residual variance, we have seen this model before:
it was introduced in Equation (5.1) to motivate the use of stationary time series models
for ‘trend-like’ behaviour. The simulated sequences in Figure 5.1 show that the model
tends to generate quasi-cyclical sequences, which is consistent with the observed patterns
in the residuals from the original model. �

This example illustrates the use of stochastic models as a means of capturing behaviour
that is not easily modelled using a parametric trend function. Of course, an alternative
approach would have been to use a nonparametric trend function to track the oscillation
in the series: the difference between the two approaches is that in (5.15) the oscilla-
tions are regarded as essentially a distraction from the underlying linear trend, whereas
a nonparametric approach would treat them as an important feature to be estimated (see
the discussion at the end of Section 4.4). Subject-matter considerations should determine
which approach is preferable.

In this section we have introduced the concept of time series residuals as a means of
checking a fitted model. They can also be used as ‘pre-whitened’ series prior to computing
cross-correlation functions in an exploratory analysis. Recall from Section 2.1.5 that the
sample CCF between two autocorrelated series is difficult to interpret. To get around this,
one possibility is to fit time series models separately to each of the individual series and
to calculate cross-correlations between the resulting residual series; for further details,
see Brockwell and Davis (2002, Section 7.3). The transfer function modelling framework
of Box, Jenkins and Reinsel (1994, Chapters 10 and 11) extends this idea, enabling the
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identification and fitting of models where one time series is considered to respond to
changes in the other.

5.1.7 Forecasting

In the ARMA model (5.5), Yt is represented in terms of preceding quantities {Yt−j :
j = 1, . . . , p} and {δt−j : j = 1, . . . , q}. This provides the opportunity to forecast future
values of the process. Suppose for the moment that the series (Yt ) follows a known ARMA
process, that the values of both Yt and δt have been observed for t ≤ T and that it is
desired to forecast the future value YT +	 for some lead time 	 > 0. For many purposes,
the natural predictor is the conditional expectation

ŶT +	 = E (YT +	| {(Yt , δt ) : t ≤ T }) ,

which has the smallest expected squared prediction error among all functions of the
observed quantities (Priestley, 1981, Section 10.1). For an ARMA model, we can write
down the model equation for YT +	 and take conditional expectations of all quantities
to obtain

ŶT +	 = φ1ŶT +	−1 + · · · + φpŶT +	−p + δ̂T +	 + θ1δ̂T +	−1 + · · · + θq δ̂T +	−q . (5.16)

The ‘hats’ here all denote expectation conditional on {(Yt , δt ) : t ≤ T }. Therefore, for
j ≤ 0, ŶT +j and δ̂T +j are just equal to their observed values: ŶT +j = yT +j and δ̂T +j =
dT +j , say. Further, for j > 0, δ̂T +j = 0 since δT +j is uncorrelated with anything prior
to time T . This provides a recursive means of calculating forecasts. Equation (5.16) is
sometimes called the difference equation form for the forecasts. For illustration, consider
the zero mean ARMA(1,1) process

Yt = φYt−1 + δt + θδt−1.

Given pairs (Yt = yt , δt = dt ) for t = 1, . . . , T , the one-step-ahead forecast is just

ŶT +1 = φŶT + δ̂T +1 + θ δ̂T = φyT + θdT .

A two-step-ahead forecast can now be computed as

ŶT +2 = φŶT +1 + δ̂T +2 + θ δ̂T +1 = φŶT +1,

and so on.
The development above is equally applicable to trend–stationary models (see Section

5.1.5): all that is required in this case is to add the trend function (μt ) to the forecasts and
prediction intervals. This effectively provides a means of prediction for regression models
fitted using GLS (Section 3.3). From now on, it is convenient to employ the notation used
in Section 5.1.5 for trend–stationary processes and to denote by Ỹt = Yt − μt the centred
process obtained by subtracting the trend function (which, in the case of a truly stationary
process, is just a constant).

In practice, it is hardly realistic to assume either that the model equation for (Yt )

is known exactly or (if moving average components are present) that the values of δt

have been observed for t ≤ T . The former assumption is discussed below. To deal with
the latter, notice that if the underlying model is known, in principle we could use the
residuals e1, . . . , eT to estimate the {δt }. These should provide reasonable estimates, and
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hence a reliable basis for the construction of forecasts, if the model is invertible and T is
large enough (see the discussion of invertibility in Section 5.1.5). However, rather than
working directly with the observations (Yt ) and residuals (et ), it is more accurate and
illuminating to work with the innovations (ht ) defined in (5.13). We have

Yt = Ỹt + μt = μt + ht +
t−1∑
j=1

wj,thj

so that the conditional expectation of YT +	 is

ŶT +	 = μT +	 + ĥT +	 +
T +	−1∑

j=1

wj,T +	ĥj .

Recall, however, that the innovations h1, . . . , hT are just linear combinations of the vari-
ables Y1, . . . , YT , whose values have been observed: hence the (δt ) are no longer needed
to calculate ŶT +	. It is clear that ĥt = ht for 1 ≤ t ≤ T . Also, since the innovations are
mutually uncorrelated with zero mean, ĥt = 0 for t > T . The forecast is therefore

ŶT +	 = μT +	 +
T∑

j=1

wj,T +	ĥj . (5.17)

As well as sidestepping the issue of estimating the (δt ), representation (5.17) enables
us to quantify the uncertainty in the forecast. The error in the forecast is YT +	 − ŶT +	,
which can be written in terms of the innovations as⎛

⎝μT +	 + hT +	 +
T +	−1∑

j=1

wj,T +	hj

⎞
⎠ −

⎛
⎝μT +	 +

T∑
j=1

wj,T +	ĥj

⎞
⎠

= hT +	 +
T +	−1∑
j=T +1

wj,T +	hj . (5.18)

This clearly has zero mean. Furthermore, (5.18) is a sum of uncorrelated terms. Its variance
is therefore

Var (hT +	) +
T +	−1∑
j=T +1

w2
j,T +	Var

(
hj

) = vT +	 +
T +	−1∑
j=T +1

w2
j,T +	vj . (5.19)

Under the assumption of normality, this variance can be used to construct a prediction
interval for YT +	: for example, a 95 % interval is

ŶT +	 ± 1.96

√√√√vT +	 +
T +	−1∑
j=T +1

w2
j,T +	vj . (5.20)

The above development is not the only way to construct forecasts and prediction
error variances. The predict.Arima routine in R uses an algorithm based on state space
methods (see Section 5.5), although the results are numerically identical to those obtained
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from (5.17) and (5.19). The presentation above does, however, yield some useful insights.
From the definition of the innovation weights {wj,t } after Equation (5.13), we have

wj,T +	 = Cov(ỸT +	, hj )/Var(hj ).

If ỸT +	 is a stationary ARMA process it can be shown, as seems intuitively reasonable,
that Cov(ỸT +	, hj ) tends to zero as the lead time 	 increases with j ≤ T fixed – after a
while, the process ‘forgets’ about the innovation hj . In (5.17), therefore, all contributions
to the second term tend to zero as 	 increases and, for large 	, the forecast is approximately
equal to μT +	 (for an MA(q) process in fact, for 	>q the equality is exact, as is easily
seen from the difference equation form (5.16) of the forecasts). It follows that the forecast
error is approximately YT +	 − μT +	, the variance of which is simply the unconditional
variance of YT +	. Notice also, from (5.19), that the forecast error variance cannot decrease
as 	 increases. To summarise, if (Yt ) is trend–stationary and (Ỹt ) is an ARMA process:

• Long-range forecasts converge to the underlying trend and do not depend to any
appreciable degree on the available observations.

• The forecast error variance (and hence the width of prediction intervals) increases
with lead time and tends to a constant value, which is the unconditional variance
of Ỹt .

These conclusions may seem obvious. However, as we will see shortly, they do not
hold for all classes of model, and consideration of long-range forecast behaviour can
provide useful guidance to the analyst. For example, as noted in Section 5.1.3, seasonal
extensions of the ARMA family are available. However, the long-range forecasts from
a stationary seasonal ARMA model will tend to a constant value, which is unrealistic
in many environmental series showing a strong seasonal cycle that is expected to persist
into the future. In such situations, it may be more appropriate to adopt a trend–stationary
model in which seasonality is incorporated into the mean function (μt ) using techniques
such as those discussed in Section 3.2.

The discussion above assumes that the model is known. In practice, of course, there
will usually be uncertainty regarding the precise form of the model itself, as well as the
values of the parameters. The net effect is that prediction intervals, calculated as described
above, tend to be too narrow. Parameter uncertainty can in principle be accounted for
using bootstrap techniques (the bootstrap prediction algorithm for GLMs in Section 3.5
can be adapted for this purpose – the only change required is to simulate from the fitted
time series model in the first step); however, unless the sample size is small this will
usually have a relatively minor effect. Model uncertainty is much more difficult to deal
with. One possibility is Bayesian model averaging , in which predictions from a set of
plausible candidate models are combined; see Draper (1995) for example. For a more
extensive discussion of these issues, see Chatfield (2000, Chapters 7 and 8). Regardless
of the method chosen to compute prediction intervals, however, users could be forgiven for
treating them with some scepticism unless their credibility has been demonstrated. Perhaps
the simplest way to achieve this is by forecasting some observations that were not used
to select or fit the model: if all is well, the mean squared error of these ‘out-of-sample’
forecasts should be similar to the forecast error variance calculated from the model.
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Example 5.3
For the haddock biomass model, the predict.Arima command has been used to produce
forecasts of log biomass, with associated error variances, for the period 2001–2010 (recall
that the model was fitted to data up to the year 2000). The error variances have been
converted to 95 % prediction intervals using Equation (5.20). The forecasts and prediction
intervals are shown in Figure 5.4(a): the y axis here is labelled with actual biomass values
to aid interpretation. The actual values for 2001–2004, which are also available to us but
have not been used so far in any of the analyses, are also shown. Setting aside, for the
moment, the complete lack of agreement between the actual values and predictions, we
focus on the latter. As expected, the forecasts themselves continue the linear downward
trend, and the width of the prediction intervals stabilises from around 2005 onwards
(notice, however, that if the prediction intervals are converted back to the original scale
as in Figure 1.2(c), they become narrower as the level decreases).
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Figure 5.4 Predictions of North Sea haddock spawning stock biomass for 2001–2010,
made on the basis of data to 2000 (a) using the trend–stationary AR(2) model sum-
marised in Table 5.1, (b) using the difference–stationary ARIMA(2,1,0) model summarised
in Table 5.2 (see Example 5.7). Actual biomass values for 2001–2004 are also given. The
y axis scaling is logarithmic.

This example demonstrates particularly well the need for out-of-sample verification
of predictive performance. The diagnostic checks in the previous section indicated an
excellent fit to the data used for fitting, yet the model is completely unable to account for
the sudden and rapid increase in log biomass in 2001 and 2002. This increase seems to
be associated primarily with an extremely good breeding season for North Sea haddock
in 1999 (ICES, 2001, Section 4.5.1). This is not apparent in the biomass data for either
1999 or 2000, presumably because juvenile fish are not part of the spawning stock. �
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5.1.8 The backshift operator

It is often useful to seek alternative representations of time series models, in order to
understand more clearly the structures that they represent and, perhaps, to appreciate
the differences between apparently similar model formulations. In this respect, a very
useful notational device is the backshift operator , denoted by B. This is used to denote
the operation of moving backwards through a series: BYt = Yt−1, B

2Yt = Yt−2 and, in
general, BkYt = Yt−k . With this convention, the ARMA(p, q) model equation (5.5) can
be written as

Yt − φ1BYt − · · · − φpBpYt = δt + θ1Bδt + · · · + θqB
qδt

(5.21)
or

(
1 − φ1B − · · · − φpBp

)
Yt = (

1 + θ1B + · · · + θqB
q
)
δt .

We can also write, for example,

BjBkYt = BjYt−k = Yt−(j+k) = Bj+kYt

so that BjBk = Bj+k . In this respect and in many others, B behaves essentially like
a number. When first encountered, perhaps its most remarkable property is that series
expansions such as

(1 − aB)−1 =
∞∑

j=0

(aB)j if |a| < 1 (5.22)

are legitimate and meaningful. The right-hand side here looks like the sum of a geometric
series with first term 1 and common ratio aB. The left-hand side looks like 1/(1 − aB),
which is the usual formula for the sum of such a series. The left-hand side should be
interpreted as an ‘inverse operation’: if Zt = (1 − aB)Yt = Yt − aYt−1, then Yt can be
thought of as (1 − aB)−1Zt .

Some examples will help to illustrate how the backshift operator can be used to obtain
alternative representations of time series models.

Example 5.4
In Section 5.1.5, we obtained an ‘infinite autoregressive’ representation of the MA(1)
model Yt = δt + θδt−1. This model can be written as Yt = (1 + θB)δt , whence we can
write δt = (1 + θB)−1Yt . From (5.22), if |θ | < 1 we have

(1 + θB)−1Yt =
∞∑

j=0

(−θ)jBjYt =
∞∑

j=0

(−θ)j Yt−j .

We therefore have δt = ∑∞
j=0(−θ)j Yt−j , so that δt−1 = ∑∞

j=1(−θ)j−1Yt−j . Hence

δt + θδt−1 = δt −
∞∑

j=1

(−θ)jYt−j ,

in agreement with the earlier result. �



STOCHASTIC TRENDS 191

Example 5.5
In Section 3.3.3 we considered the ‘lagged response’ regression model (Equation (3.52))

Yt = β0 +
p∑

i=1

βixit + φYt−1 + δt .

This can equivalently be written as

Yt − φYt−1 = (1 − φB)Yt = β0 +
p∑

i=1

βixit + δt ,

so that

Yt = (1 − φB)−1

(
β0 +

p∑
i=1

βixit + δt

)
.

Now, using (5.22), we can replace (1 − φB)−1 with
∑∞

j=0 φjBj providing |φ| < 1.
This yields

Yt =
∞∑

j=0

φjβ0 +
∞∑

j=0

φjBj

p∑
i=1

βixit +
∞∑

j=0

φjBj δt

= β0

1 − φ
+

p∑
i=1

βi

∞∑
j=0

φjxi(t−j) +
∞∑

j=0

φjδt−j ,

as given after Equation (3.52). However, notice that the final term above was obtained as
(1 − φB)−1δt . Writing this final term as εt , we therefore have

εt = (1 − φB)−1δt ⇒ (1 − φB)εt = δt ⇒ εt = φεt−1 + δt ,

and (εt ) is an AR(1) process as claimed in the earlier chapter. �

Example 5.6
Consider a simple ecosystem in which there are two dominant species. For the sake of
argument, we will refer to these as ‘predators’ and ‘prey’. Let Xt and Yt be the population
sizes of predators and prey respectively, in year t . Typically, the predator population in
year t will depend both on the size of the breeding population and on the availability of
food in year t − 1. Similarly, the prey population will depend on the numbers of both
predators and prey during the previous year. These considerations suggest, as a very
simple model of the system, the pair of equations

Xt = cX + φ1Xt−1 + ψ1Yt−1 + δt ,

Yt = cY + φ2Yt−1 + ψ2Xt−1 + εt ,

where (δt ) and (εt ) are both white noise sequences. The parameters φ1 and φ2 represent
dependence on the previous year’s breeding population for each species; ψ1 represents
the predators’ dependence on the food supply and ψ2 (which is expected to be negative)
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represents prey losses from predation. The parameters cX and cY control the mean
population sizes.

This simple predator–prey model looks similar to a first-order autoregression, since
the populations of both predators and prey depend only on the previous years’ values.
We can, however, use the backshift operator to investigate the properties of either time
series taken individually. For the sake of illustration we consider the predator population
series (Xt ). To eliminate Yt−1 from the first equation above we can apply the operator
(1 − φ2B) to both sides, noting (from the second equation applied to Yt−1 rather than
Yt ) that

(1 − φ2B)Yt−1 = cY + ψ2Xt−2 + εt−1.

We therefore have

(1 − φ2B)Xt = (1 − φ2B)cX + φ1(1 − φ2B)Xt−1

+ ψ1 (cY + ψ2Xt−2 + εt−1) + (1 − φ2B)δt .

This simplifies to yield

Xt = [cX (1 − φ2) + ψ1cY ] + (φ1 + φ2)Xt−1

+ (ψ1ψ2 − φ1φ2)Xt−2 + δt + ψ1εt−1 − φ2δt−1

= c0 + γ1Xt−1 + γ2Xt−2 + δt + ξt−1, say,

where ξt = ψ1εt − φ2δt . This looks very similar to the model equation for an ARMA(2,1)
process with nonzero mean; the only difference is the presence of the term ξt−1 in place
of θδt−1. However, it can be shown that the properties of the process are identical to
those of an ARMA(2,1) and hence, for all practical purposes, this can be taken as an
exact model for (Xt ). An identical argument holds for the prey population sizes (Yt ).
This may be useful in suggesting appropriate models for time series of individual species
population sizes, at least in the simple situation considered here.

The ARMA(2,1) structure for (Xt ) may appear surprising, given the first-order depen-
dence of the original model equations. However, the AR(2) component makes sense in
terms of the population dynamics; in fact, it offers exactly the same types of behaviour
that are demonstrated by more complex discrete-generation predator–prey models (e.g.
Krebs, 2001, Chapter 13; Kot, 2001, Chapter 11), although the treatment of such mod-
els in the literature is usually deterministic, with the error series (δt ) and (εt ) omitted.
Specifically, the options are that one or both series are nonstationary (which will result
in either a population explosion or extinction of one or both species) or that both series
are stationary, which corresponds to the species coexisting with population levels fluc-
tuating about an equilibrium level. In the stationary case, the AR(2) component offers
the possibility that the autocorrelation function will either decay exponentially after lag 1
or that it will oscillate (see Section 5.1.1). The latter possibility corresponds to quasi-
cyclical behaviour in the population time series, which is precisely what is observed
for some species. Perhaps the best-known example of this involves the Canadian lynx,
for which the snowshoe hare is a staple food. The populations of both lynx and hare
show clear cycles, with a steady period of around 10 years. The lynx series is a clas-
sic example that has attracted a lot of attention in the time series literature (see, for
example, Priestley, 1981, Section 5.5). The development above provides one possible
explanation for the cyclical behaviour, in terms of the underlying population dynamics.
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This explanation is not universally accepted, however; see Krebs (2001, page 226) and
references therein. �

In the preceding example, there were potentially two variables of interest (predator
numbers and prey numbers) so that a bivariate model was required. More generally,
multivariate models are required whenever one is interested in studying two or more
variables simultaneously. For an overview of modelling approaches for multivariate time
series, see Section 6.2.

5.2 Trend removal via differencing

In the models considered so far in this chapter, the values of any autoregressive parameters
are constrained by the requirement for (trend–)stationarity. For example, an AR(1) process
is stationary only if |φ| < 1. If we set φ = 1 in the AR(1) model equation, we obtain a
random walk :

Yt = Yt−1 + δt . (5.23)

Figure 5.5(a) shows simulations, both of this process and of an AR(1) with φ = 0.95.
Notice that the stationary process fluctuates around its mean value of zero, whereas the
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Figure 5.5 Simulated time series, each of length T = 250 , from models of the form
Yt = φYt−1 + δt , with δt ∼ N(0 , 1 ). For each simulation, Y0 = 0 and the same white
noise sequence δ1 , . . . , δ50 is used. Panel (a) shows series with φ = 0 .95 (corresponding
to a stationary series with mean zero) and φ = 1 (a random walk). Panel (b) shows a
series with φ = 1 .05 . Notice the different vertical scale here.
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random walk drifts away. To understand the latter behaviour, suppose that at time t = 0 the
random walk is at y0. Conditional on this value, we have Y1 = y0 + δ1, Y2 = Y1 + δ2 =
y0 + δ1 + δ2 and, in general, Yt = y0 + ∑t

j=1 δj . The expectation of this quantity is y0

and its variance is tσ 2
δ . The linear increase of the variance with t suggests that, over time,

the series (Yt ) will tend to drift further and further from its starting point of y0. Formally,
for any fixed M the probability that Yt lies in the interval (y0 − M,y0 + M) tends to zero
as t → ∞.

It is useful to rearrange (5.23) as

Yt − Yt−1 = δt ,

which shows that for a random walk the differences between successive observations
form a white noise process and are therefore stationary. This simple observation forms
the basis for an alternative class of nonstationary processes in which the differences
between successive observations are stationary. For obvious reasons, these processes are
sometimes described as difference–stationary .

Using the backshift operator, the difference between successive observations can be
written as (1 − B)Yt . If we take the resulting time series and calculate differences again,
we obtain the second differences :

(1 − B) [(1 − B) Yt ] = (1 − B)2Yt = (1 − 2B + B2)Yt = Yt − 2Yt−1 + Yt−2.

In general, the d th differences can be calculated as (1 − B)dYt .

5.2.1 ARIMA models

An important class of difference–stationary processes is the so-called autoregressive inte-
grated moving average (ARIMA) class. A process (Yt ) is said to be ARIMA of order
(p, d, q) if its dth difference is a stationary and invertible ARMA(p, q) process. The
model equation for such a process can be deduced by substituting (1 − B)dYt for Yt

in (5.21):

(1 − φ1B − φ2B
2 − · · · − φpBp)(1 − B)dYt = (1 + θ1B + · · · + θqB

q)δt . (5.24)

For example, for an ARIMA(1,1,0) process we have

(1 − φ1B)(1 − B)Yt = δt ⇒ [
1 − (1 + φ1) B + φ1B

2] Yt = δt ,

so that Yt = (1 + φ1)Yt−1 − φ1Yt−2 + δt .
We give here a very brief overview of the main features of ARIMA models. More

details can be found in Brockwell and Davis (2002, Chapter 6), for example. Model iden-
tification is essentially the same as for ARMA models; the only change is the need to
identify an appropriate degree of differencing, d . One way to do this is via visual inspec-
tion of time series plots of successive differences since, as in Figure 5.5(a), the appearance
of series that require differencing is often very distinct from that of stationary processes.
Very slow decay in the sample ACF is another common symptom of nonstationarity, as
illustrated in an example below. In general, when using ARIMA models the aim is to find
the smallest value of d for which the differences can plausibly be regarded as stationary,
since overdifferencing can have undesirable consequences. For example, in the random
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walk model (5.23) the first differences form a white noise sequence, but the second
differences are (1 − B)2Yt = δ − δt−1. This is a noninvertible MA(1) process, which is
not amenable to analysis (recall the discussions in Sections 5.1.5 and 5.1.7). Notice that
in this case the variances of the first and second differences are σ 2

δ and 2σ 2
δ respectively:

the overdifferenced series has a higher variance. This is a symptom of overdifferencing
in general.

Once an appropriate degree of differencing has been identified, a stationary ARMA
model can be fitted to the differences using the methods already described. Notice, how-
ever, that when calculating the first differences we cannot compute Y1 − Y0 since Y0 is
unobserved. Similarly, in general the dth differences can be computed only from time
d + 1 onwards. Therefore, if an ARIMA(p, d, q) model is fitted to a time series of length
T , the ‘effective sample size’ to be used in, for example, AIC calculations is T − d;
residuals can also be calculated only from time d + 1 onwards. An unfortunate conse-
quence of this is that models with different values of d cannot be compared using formal
techniques such as AIC, since they are not fitted to the same data.

If an ARIMA model has been fitted with a view to forecasting future values of
a process, perhaps the simplest way to proceed conceptually is to apply the theory of
Section 5.1.7 to forecast the values of future differences (which follow a stationary
ARMA process) and then to deduce the corresponding values for the original series.
For example, if d = 1 and we observe data up to time T , we can forecast the first differ-
ence at time T + 1 as D̂T +1, say. However, we must have D̂T +1 = ŶT +1 − YT , so that
ŶT +1 = YT + D̂T +1. Subsequent forecasts can be calculated in a similar way, and forecast
error variances calculated as described in Section 6.4 of Brockwell and Davis (2002). An
alternative is to use state space methods, as implemented in the predict.Arima routine
in R. A full treatment is beyond the scope of this book; however, it is worth noting
an important difference between the long-range forecast behaviour of ARIMA models
with d > 0 and that of stationary ARMA processes. In the stationary case, the long-
range forecasts themselves tend to the overall mean of the process and the forecast error
variance tends to a finite limit (see Section 5.1.7 before Example 5.3). For an ARIMA
process, however, the limiting behaviour of the forecasts themselves is model-dependent
and, perhaps more importantly, the forecast error variance grows without bound as the
forecast lead time increases. This is because, as with the random walk, any realisation
of a difference–stationary process can end up arbitrarily far from its starting point after
enough time has elapsed; in practice, it means that prediction intervals at long lead times
are often extremely wide. We return to this point in Section 5.3.

At first sight, the possibilities offered by differencing may seem limited – for example,
there is no obvious way to deal with an AR(1) process with φ = −1 or with |φ|> 1. How-
ever, the types of nonstationarity that cannot be handled by differencing are either unlikely
to be encountered in practical problems or can be handled using small modifications of
the differencing idea (Box, Jenkins and Reinsel, 1994, Section 4.1 and Chapter 9). For
example, an AR(1) process with φ > 1 will always look like that in Figure 5.5(b), with the
random fluctuations effectively swamped by exponential growth. This type of behaviour
is rare in environmental applications and, where it does occur, it would make more sense
to model it using a trend–stationary model in which the trend is an exponential function
of time.

Another argument for the use of differencing is that explicit expressions for differences
can all be written in the form

∑
j wjYt−j , where the ‘weights’ {wj } sum to zero. From the

discussion in Section 2.3, any such sequence of weights can be regarded as a high-pass
filter, whence differencing can be interpreted as a trend removal device. In particular, it
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can be shown (Brockwell and Davis, 2002, Section 6.1) that if the original time series
contains a polynomial trend of degree d , then this trend can be removed by differencing
d times. To illustrate this, consider taking differences in the linear trend model

Yt = β0 + β1t + εt .

The first differences are given by

Yt − Yt−1 = β0 + β1t + εt − [
β0 + β1(t − 1) + εt−1

] = β1 + εt − εt−1, (5.25)

which is equal to a constant plus the first differences of the (εt ) series. Therefore, if (εt )

itself is an ARIMA(p, 1, q) process for some values of p and q, Yt − Yt−1 is simply
an ARMA(p, q) process with nonzero mean β1. Analogous results hold for higher-order
polynomials. In general, if the dth difference of (Yt ) is an ARMA(p, q) process with
nonzero mean, then (Yt ) itself can be regarded as an ARIMA(p, d, q) process superim-
posed on a polynomial trend of degree d . Notice, however, that the use of differencing
to remove polynomial trends is only appropriate when the errors (εt ) themselves form
an ARIMA process of the appropriate degree. In (5.25), for example, if (εt ) is already
stationary then (εt − εt−1) is overdifferenced. Of course, in this case the process (Yt )

would be trend–stationary, and hence could be analysed using the methods described
in Section 5.1.

Example 5.7
To illustrate the use of ARIMA models, we pay a final visit to the haddock biomass series
of Section 1.3.2. In Section 5.1, we found a convincing trend–stationary model for this
series. We now consider whether it could be modelled as an ARIMA process instead. For
illustrative purposes, Figure 5.6(a) shows the sample autocorrelation function of the log
biomass series. The correlations decay to zero rather more slowly than for the stationary
cases in Figure 5.2: as noted above, this is a common symptom of nonstationarity (in
fact, for most nonstationary series the decay is much slower than in this example). Of
course, in this particular case the nonstationarity is apparent from the time series plot in
Figure 1.2(a), so the sample ACF tells us nothing new. Sometimes, however, the ACF
can provide important additional information regarding stationarity.

Figure 5.6(b) is a time series plot of the first differences of the log biomass series.
In Section 1.3.2, we noted that these differences are actually the logarithms of the pro-
portional increase in biomass each year. They look fairly stationary, apart from a couple
of large values at the beginning of the series. Their mean is −0.0086; this is surprisingly
small, since we have until now almost taken it for granted that there is a linear trend
in this series – in this case, from (5.25) the differences should have nonzero mean. To
understand what is happening, notice that the mean difference is

1

T − 1

T∑
t=2

(yt − yt−1) = yT − y1

T − 1
,

and therefore depends on just two of the undifferenced observations. In this particular
series, Figure 1.2(a) shows that the first value y1 is unusually low (this was also apparent
in the residual analysis from the initial regression model, discussed in Section 3.1.1). We
will bear this in mind during the subsequent analysis.
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Figure 5.6 ARIMA model identification for the logarithms of the haddock biomass series.
(a) ACF of the logarithms, (b) time series of the differences, (c) ACF of the differences,
(d) PACF of the differences.

Having concluded that the differences are stationary, Figures 5.6(c) and (d) show
their sample ACF and PACF. The ACF shows a clear oscillating pattern, suggesting an
AR(2) model. The PACF confirms this, with a single large coefficient at lag 2. One might
be tempted to conclude that, since the PACF at lag 1 does not differ significantly from
zero, we should try to fit an AR(2) model with a zero coefficient of Yt−1. In fact, such
a conclusion is not justified since, for an AR(2) process, the theoretical autocorrelation
at lag 1 is ρ(1) = φ1/(1 − φ2) (Kendall and Ord, 1990, page 59). If φ2 is negative,
therefore, ρ1 could be rather smaller than φ1 and hence could appear insignificant even
if φ1 is nonzero.

If the first differences appear to follow an AR(2) process, the original log biomass
series must follow an ARIMA(2,1,0). Despite the fact that the mean of the differences is
close to zero, we may also wish to account for the apparent linear trend. In R, there are two
possible ways to do this using the arima command. The first is to fit an ARIMA(2,1,0)
to the original data with a covariate representing the trend – in this case, the result will
correspond to that obtained by first differencing both the data and the covariate values
and then fitting a stationary AR(2) to the result. A peculiar feature is that residuals will
be computed for all observations – the first of these is essentially meaningless since, as
noted above, the difference y1 − y0 cannot be computed (the calculations used by arima

rely on a Bayesian argument, which will not be discussed here).
The second option for fitting the required ARIMA(2,1,0) model is to calculate the

differences explicitly and then use arima to fit an AR(2) model with nonzero mean
to these. The results will be identical to those from the first approach, except that in
this case a residual will not be calculated for the first observation since it is lost in the
differencing prior to calling arima. This option is arguably more transparent; however, if
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we subsequently wish to use the fitted model for prediction then the first approach should
be used, since the computed predictions and standard errors will then relate directly to
log biomass rather than to its differences.

Whichever option is used, the results indicate that the slope of the trend line (or
equivalently the mean of the differenced series) is not significantly different from zero:
the estimate is −0.117 with a standard error of 0.0419. In case this is influenced unduly by
the first observation (see above), it may be worth refitting the model with this observation
excluded. If this is done, the estimate changes to −0.0346, with a standard error of
0.0356. This estimate is much closer to that from the trend–stationary model in Table 5.1;
however, it is still far from being statistically significant at any conventional level. We
therefore drop this term from the model and refit. The results are shown in Table 5.2.
Both remaining coefficients are highly significant, confirming that they are both needed
in the model. Standard diagnostics, of the type discussed in Section 5.1.6, indicate that
this model provides an excellent fit to the data.

Table 5.2 Edited R output for the ARIMA(2,1,0)
model fitted to haddock biomass data.

Coefficients:

ar1 ar2

0.4926 -0.6597

s.e. 0.1451 0.1366

sigma^2 estimated as 0.08546

log likelihood = -7.61, aic = 21.23

It is of interest to compare this model with the trend–stationary alternative considered
in Table 5.1. As discussed in Section 1.3.2, the implied mechanisms behind the two models
are rather different. The trend–stationary model asserts that, over the period of record,
log biomass has followed a linear downward trend; this could reasonably be attributed
to factors such as fishing activity. In contrast, the difference–stationary ARIMA model
asserts that variation in biomass is essentially unsystematic. Setting aside for a moment
the dreadful out-of-sample predictive performance of the trend–stationary model, it would
be useful if, in general, we could determine which model fits better (and hence which of
the two underlying mechanisms is better supported by the data). It is tempting to try and
compare the models by using criteria such as AIC: the values in Tables 5.1 and 5.2 are
26.92 and 21.23 respectively, and appear to favour the ARIMA model. However, the AIC
for the trend–stationary model is obtained from T = 38 observations whereas the second
is from T − 1 = 37 differences – therefore, as discussed previously, we cannot use AIC
to compare the models. We therefore confine ourselves to an informal comparison. The
error variances for the two models are estimated as 0.08824 and 0.08546 respectively.
Although these are very similar, the ARIMA model achieves a slightly smaller value with
fewer parameters. Moreover, there seems to be slightly less autocorrelation in the ARIMA
model residuals (not shown here) than in those for the trend–stationary model shown
in Figure 5.3.

An alternative means of comparing the models is to examine their out-of-sample
predictive performance. The predictions for the trend–stationary model have already been
discussed in Section 5.1.7. Prediction intervals for the ARIMA model, for the period
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2001–2010, have been computed in the same way and are shown in Figure 5.4(b). The
first point to note here is that the intervals widen extremely rapidly; this is a general feature
of ARIMA models, as discussed above. Nonetheless, the observations for 2001–2004 still
fall outside the intervals from this model: its performance, although undeniably better than
that of the trend–stationary model, is still somewhat unsatisfactory.

In summary, the ARIMA model appears to provide a slightly better fit to the data used
for model fitting and to provide improved (but still inadequate) predictive performance.
On the basis of the data alone, therefore, one should probably conclude that this model
is preferable. However, more is known about North Sea fish stocks than simply the data
used here. ICES (2001, page 16) suggests that the long-term decline may be due to a
combination of high fishing effort and unfavourable climate conditions rather than to
unsystematic year-on-year variation; in this case a trend–stationary model may be more
appropriate, but with some index of fishing effort or climatic suitability substituted for
the linear trend. Furthermore, as noted in Section 5.1, the 2000–2001 increase in biomass
was primarily associated with an extremely good breeding season in 1999. To capture this
kind of behaviour it would be necessary to account for the age structure of a population.
Deterministic age-structured models are commonly used in fisheries management (e.g.
Haddon, 2001, Section 2.8); stochastic versions can be handled using state space methods
such as those discussed in Section 5.5 (see, for example, Gudmundsson, 2004). However,
more detailed data would be required to implement either of these suggestions. �

At one time, ARMA and ARIMA (AR(I)MA) models were quite popular in many
areas of environmental science. For a small sample of applications see Edwards and Coull
(1987), Milionis and Davies (1994), Mishra and Desai (2005), Robeson and Steyn (1990),
Toth, Brath and Montanari (2000) and Zuur and Pierce (2004), and references therein.
Their appeal stems largely from the availability of well-understood methods for identi-
fying, checking and comparing models, as well as computationally efficient methods of
fitting them. However, as illustrated in the haddock stocks example above, they can strug-
gle to represent the complexity of some environmental time series. In many application
areas, therefore, to deal with ‘stochastic’ trends the current move is towards more sophis-
ticated and computationally intensive methods that aim to represent more directly the
mechanisms underlying the series of interest, as well as accounting for features such as
measurement error (which is likely to affect the haddock stocks example) and the poten-
tial availability of different sources of information. Such features are most easily handled
within the framework of state space models, which are discussed below. However, it can
be helpful to bear in mind the properties of AR(I)MA models when working with more
sophisticated techniques that are often closely related. Furthermore, differencing is a sim-
ple trend removal device that can be extremely helpful if interest is not primarily in the
trend but perhaps in the relationship between two series that both appear nonstationary.

5.2.2 Spurious regressions

To illustrate the last point above, we conclude this section with a cautionary example.
Figure 5.7(a) shows two simulated random walks, each of length 250. The series have been
generated independently; (Yt ) has already been seen in Figure 5.5(a). Although the series
are unrelated, a casual inspection might suggest otherwise because of the apparent shared
trend. This is typical of difference–stationary processes, essentially because their realisa-
tions are unbounded (see the previous subsection). If two such processes are observed for
long enough, they will both change a lot over the period of observation – either in the
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Figure 5.7 Illustration of the phenomenon of spurious regressions. (a) Simulated realisa-
tions of two uncorrelated random walks (Xt ) and (Yt ). (b) Residuals from the regression
of Yt upon Xt .

same direction as in Figure 5.7(a) or in opposite directions. This gives the appearance of
a strong association between them.

Consider now what happens if we regress (Yt ) upon (Xt ) in Figure 5.7. Fitting
the model Yt = β0 + β1Xt + εt yields an estimate β̂1 = 0.965, with the standard error
calculated as 0.101. The conventional t statistic for testing the null hypothesis H0 : β1 = 0
is 9.6 on 248 degrees of freedom, so that the null hypothesis is rejected overwhelmingly.
This test result is correct, since the null hypothesis asserts that the series (Yt ) was generated
as Yt = εt (i.e. that it is white noise). It is, however, wrong to conclude from this that there
is a genuine relationship between (Xt ) and (Yt ): we have learned that the null hypothesis
is false, not that the alternative is true (see also the discussion of test procedures in
Section 2.4). A careful analyst would avoid the potential pitfall via the use of appropriate
diagnostics. For example, Figure 5.7(b) shows that the residuals from the regression bear
no resemblance to a white noise sequence (in fact, their behaviour is similar to that
of a random walk, which is unsurprising since any linear combination of independent
random walks is itself just another random walk): this shows clearly that the assumptions
underlying the analysis are violated.

This example illustrates a phenomenon known in the econometrics literature as ‘spu-
rious regressions’ (Davidson and Mackinnon, 2004, Section 14.2). It shows that apparent
correlation can arise from random mechanisms that are completely unconnected. The
bottom line is that particular care is required when investigating relationships between
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difference–stationary series. The danger is not only of misinterpreting the results of test
procedures in the absence of a genuine relationship: the theory underlying the calcula-
tion of standard errors and F statistics can also break down if, for example, a lagged
response model (see Section 3.3.3 before Example 3.8) is fitted to a difference–stationary
process. This is because, in this setting, such models can immediately become station-
ary if the coefficient(s) of the lagged variable(s) move away from their true values (for
example if the coefficient of Yt−1 decreases from 1 in a random walk): this causes abrupt
changes in the behaviour of the information matrix (see Section 3.1.6), which invalidates
the usual asymptotic theory. Fortunately, the usual theory does hold in situations where
a difference–stationary series (Xt ) drives a response (Yt ) via simple relationships such
as Yt = β0 + β1Xt + εt , where (εt ) is a stationary process: here, (Yt ) is itself stationary
if β1 is zero and difference–stationary otherwise – but the information matrix depends
solely on (Xt ) and not on the regression parameters, so the previous problem does not
arise. The theory holds more generally where some linear combination of the series under
consideration is stationary: in this case, the series are said to be cointegrated (Davidson
and Mackinnon, 2004, Section 14.5).1 Overall, then, it can be argued that the spurious
regressions phenomenon is often caused by misinterpreting mis-specified models and can
thus be avoided by careful residual analyses. Alternatively, one could circumvent the
problem entirely by differencing the series prior to analysis. For the series in Figure 5.7,
for example, a regression of (1 − B)Yt upon (1 − B)Xt correctly accepts the null hypoth-
esis of no association (the p-value for this particular test is 0.774). Of course, differencing
is useful only if relationships between differenced series (representing rates of change or
growth) are of subject-matter interest in themselves; however, it is always worth bearing
in mind as an option.

5.3 Long memory models

Although we have treated stationary and nonstationary processes separately in this chapter,
in practice the distinction between them may not always be clear-cut. Figure 5.8(a) illus-
trates this: it shows annual values of the East Atlantic Jet (EAJ) index from 1958 to
1998, obtained from the Climate Prediction Center of the US National Oceanographic
and Atmospheric Administration.2 The EAJ is an index of large-scale atmospheric vari-
ability that has been related to various aspects of local climate, including summer melting
of glaciers in Svalbard (Washington et al., 2000) and spring precipitation in the Iberian
peninsula (Martı́n et al., 2004).

The EAJ series exhibits trend-like behaviour, with an extended period of low values
from the mid 1960s to the mid 1980s and then a period of high values afterwards. The
sample ACF, shown in Figure 5.8(b), shows a relatively long series of positive (although
small) coefficients, which is typical of nonstationary processes. This may lead us to suspect

1 There is a substantial body of rather technical literature suggesting that the usual asymptotic
theory fails in regression models with difference–stationary covariates that are not cointegrated:
see Banerjee et al. (1993, Chapter 6) for a summary. However, the crux of the argument seems to
be that the normalised information tends to a random matrix rather than a constant, and it is not
always obvious that this is relevant in applications. For example, this can be shown to occur when
regressing on a random walk (Xt ) as in the example above, but the usual arguments can be applied
if one regards the inference as conditional on the observed values of (Xt ). For a formal discussion
of this in a wider context, see Sweeting (1992).

2 http://www.cpc.noaa.gov.
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Figure 5.8 (a) Annual time series of the East Atlantic Jet index, 1958–1998. (b) Sample
ACF of the East Atlantic Jet series, with a theoretical ACF for the fitted ARIMA(0 , d , 0 )

model superimposed. (c) Specimen realisation of 41 values from the fitted model. (d) Fore-
casts and approximate 95 % prediction intervals from the fitted model.

nonstationarity in the series and hence to model it using ARIMA models. However, we
have seen that realisations from such models will eventually move arbitrarily far from
their starting point (equivalently, their long-run forecast error variances are unbounded).
This is unrealistic in the present context since the behaviour of the climate system, of
which the EAJ represents a part, is constrained by physical and chemical laws. The EAJ
index therefore cannot take indefinitely large values, and a nonstationary ARIMA model
is inappropriate.

Many climatic time series exhibit features similar to the EAJ. This has led to the
concept of ‘interdecadal variability’, which is characterised, implicitly or explicitly, by
(quasi-)periodic structures at low frequencies (see Moron, Vautard and Ghil, 1998 for
a review). A first glance at Figure 5.8(a) might suggest, for example, that there is an
underlying cycle of around 40 years. The existence of exact periodicities in naturally
occurring annual series seems unlikely, however, and in any case it would be unwise to
draw such conclusions in the absence of a much longer data series.

Stationarity is not a property of data, but rather of a stochastic model (see the defi-
nition in Section 2.1.3). It is therefore not appropriate to ask whether a particular series
is stationary: rather, one should ask whether it is described better by a stationary or
a nonstationary model. We have encountered two broad classes of nonstationary pro-
cess: trend–stationary and difference–stationary. Neither seems appropriate for the EAJ
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series: it is difficult to identify a deterministic trend with any confidence on the basis of the
available data, and difference–stationary models have an unrealistic long-run behaviour.
This motivates the search for stationary models that exhibit the kind of behaviour seen
in Figure 5.8(a). Perhaps the most satisfying such model uses the concept of ‘fractional
differencing’, introduced by Granger and Joyeux (1980) and Hosking (1981). The idea is
to extend the definition of the ARIMA(p, d, q) process in Equation (5.24) to noninteger
values of the differencing parameter d: since the model is stationary if d = 0 and nonsta-
tionary with unbounded realisations if d = 1, then perhaps intermediate values of d will
lead to a stationary process with trend-like features. Initially this seems unhelpful, since
it is not clear that such ‘fractional differences’ have any meaning or that they could be
calculated in practice. The key is to use the backshift operator to write the dth difference
of a series (Yt ) as (1 − B)dYt and then to use a power series expansion:

(1 − B)d =
∞∑

j=0

(
d

j

)
(−B)j =

∞∑
j=0

d!

j !(d − j)!
(−B)j

= B0 +
∞∑

j=1

d(d − 1) · · · (d − j + 1)

j !
(−B)j =

∞∑
j=0

ajB
j , say.

With this convention, the dth difference of the series Yt can be written as (1 − B)dYt =∑∞
j=0 ajYt−j . If d is an integer, the only nonzero terms in this sum are those for

j = 0, . . . , d − 1 and we recover the usual differences. Otherwise, however, the sum
involves an infinite number of past values of the process.

Having defined the fractional differencing operator, we can extend the class of ARIMA
processes to allow noninteger values of the differencing parameter, as required. When d is
not an integer, we refer to the resulting process as fractionally integrated . Hosking (1981)
shows that for d in the range (−1/2, 1/2) the resulting process is stationary and invertible,
and derives a variety of properties including the autocovariance, autocorrelation and par-
tial autocorrelation functions. The autocovariance function provides all of the information
necessary to implement the innovations algorithm (see Section 5.1.5), and hence to carry
out Gaussian likelihood based estimation and prediction for this class of models. Unfor-
tunately, the computational burden is substantially greater than for the ARMA models
considered previously; in practice, therefore, the likelihood is often approximated. In R,
approximate likelihood based fitting of these models is available in libraries fracdiff

(Fraley et al., 2006) and longmemo (Beran and Maechler, 2009).
A key feature of fractionally integrated processes is that when d lies in the interval

(0, 1/2), at large lags the autocorrelation ρ(k) is approximately proportional to k2d−1:
the autocorrelations therefore decay with lag according to a power law. This decay rate
is much slower than that for stationary ARMA models, where the autocorrelations decay
exponentially. A consequence of this is that in a fractionally integrated process with
d ∈ (0, 1/2), non-negligible correlation can persist between observations that are widely
separated in time. In practice, this means that realisations of such processes can remain
above or below their underlying mean level for extended periods. For practical examples
of this in relation to climatic time series, see Percival, Overland and Mofjeld (2001).

Example 5.8
As just described, the characteristics of fractionally integrated processes are very similar
to those of the EAJ series in Figure 5.8(a). By way of illustration, an ARIMA(0, d, 0)
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model has been fitted to the series using the fracdiff library in R: this implements a
fast approximate maximum likelihood method due to Haslett and Raftery (1989). The
differencing parameter d is estimated as d̂ = 0.213, with a reported standard error of
3 × 10−7 (although this seems unrealistically small, suggesting a problem with the standard
error calculation).3 The theoretical ACF of the fitted model is superimposed on the sample
ACF in Figure 5.8(b), and is qualitatively very similar to the sample version. A time
series plot and sample ACF of the standardised innovations (not shown) suggest that the
model accounts for most of the apparent structure in Figure 5.8(a). Figure 5.8(c) shows a
sequence of 41 values simulated from the fitted model: this demonstrates the ability of the
fitted model to generate ‘trend-like’ features similar to those in the original data. Finally,
Figure 5.8(d) shows forecasts from the fitted model for the period 1999–2028, along with
approximate 95 % prediction intervals (these are based on the innovations algorithm, as
discussed in Section 5.1.7). Notice that the forecasts decay very slowly to the mean of
the process under the fitted model: this reflects the persistence of the correlation. Notice
also that because the fitted model is stationary, the prediction intervals remain bounded
and are hence physically plausible. �

Because of the persistence of correlations in fractionally integrated processes, they are
often described as having long memory . A long memory process may be defined formally
(McLeod and Hipel, 1978) as a stationary process for which the autocorrelations are not
absolutely summable:

∞∑
k=0

|ρ(k)| = ∞.

For this condition to hold, ultimately the autocorrelations must decay at a rate of 1/k or
slower, which is the case for fractionally integrated processes with d > 0.

Long memory processes are often characterised via their Fourier representations (see
Section 2.3.1). To appreciate this characterisation it is necessary to consider the variances
of the normalised sample Fourier coefficients (e.g.

√
T A(f ) and

√
T B(f ) in the notation

of Section 3.4) of a realisation of the process. For many stationary processes, as the sample
size increases two things happen. Firstly, the discrete grid of Fourier frequencies becomes
successively finer until it can be approximated by a continuous frequency range and,
secondly, the variance of the normalised coefficient at frequency f tends to a frequency-
dependent limit, h(f ), say (this exposition is deliberately heuristic: for a more rigorous
account, see Priestley, 1981, Chapter 4). This limit is called the spectral density of the
process. At frequencies where the spectral density is large, the Fourier coefficients of
any process realisation will also tend to be large; hence the Fourier representation of that
realisation will contain substantial contributions from sinusoids at those frequencies. At
frequencies close to zero, the spectral density of any long-memory process has the form
h(f ) ∝ f −β for some β ∈ (0, 1) (Beran, 1994, Section 2.1). Hence any realisation of a
long-memory process will be dominated by low-frequency variability and, in particular,
may exhibit apparent long-term cycles. This formalises more precisely the concept of
interdecadal variability discussed at the start of this section.

Since the study of Nile river flows by Hurst (1951) in which the phenomenon of long-
memory was first observed, the development of long-memory models has been driven

3 An exact maximum likelihood fit of a zero-mean ARIMA(0, d, 0) model, using the software
accompanying this book, yields the estimate d̃ = 0.240 with a more plausible standard error of 0.113.
The exact fit is much slower, however.
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largely by applications in environmental science, notably hydrology and climatology. The
presence of long memory in many environmental time series is now generally recognised,
although initially it may be difficult to envisage mechanisms that could give rise to such
structure: for example, it is rather unlikely that any natural process is really generated as
an infinite sum of past values, as suggested by the formula (1 − B)dYt = ∑∞

j=0 ajYt−j .
In fact, several plausible mechanisms exist. One is the aggregation of short-memory
processes: Granger (1980) showed that a sum of AR(1) processes can have long memory
if the parameters of the individual processes are sampled independently from appropriate
probability distributions. In a complex system such as the climate it is easy to envisage
large-scale structure as arising from a superposition of smaller-scale processes, many of
which may have quite different dynamics: this could therefore be an explanation for the
apparent long memory in the EAJ series considered earlier. Beran (1994, Section 1.3)
reviews several other mechanisms that can give rise to long memory.

Apart from fractionally integrated processes, most models for long-memory processes
are specified directly via the autocorrelation or spectral density function; see Beran (1994,
Chapter 2) for a review. A variety of heuristic methods are available for parameter esti-
mation in rather simple models. However, Gaussian likelihood based inference is more
flexible and usually more efficient. As with fractionally integrated ARIMA models, exact
likelihood calculations are computationally expensive; most of the available methods are
therefore based on approximations. Some theoretical progress has been made in more
complex settings, for example time series regression with long-memory errors (Beran,
1994, Chapter 9). An interesting, but perhaps unsurprising, result is that the presence of
long memory substantially reduces the precision with which polynomial trends can be
identified. Indeed, this is one case in which the standard least squares estimators are not
optimal even in large samples (recall the discussion in Section 3.1.1): it is worth the
extra effort of likelihood based or GLS estimation in such settings. Applications to the
analysis of global temperatures have been considered by Bloomfield (1992) and Smith
and Chen (1996): both papers showed that even allowing for the potential presence of
long memory in the climate system, there was strong evidence for an increasing trend
in global temperatures over the twentieth century. More recently, wavelet methods (see
Section 4.3.2) have been advocated as an alternative means of separating long-memory
errors from deterministic trends that can be approximated reasonably by polynomials
(Craigmile, Guttorp and Percival, 2004, 2005): the approach works in essence because
information on such trends is concentrated in a relatively small number of coefficients
in the wavelet decomposition. Despite these advances, however, software for the routine
application of long-memory models is generally less well developed than for most of the
other material covered in Part I of this book.

5.4 Models for irregularly spaced series

The development of plausible stochastic models for irregularly spaced series is less
straightforward than in the regular case. One reason for this is that the dependence
between successive observations typically varies with their temporal separation, and it
is not immediately obvious how to write down a simple and meaningful model that cap-
tures this feature. Broadly speaking, the available models fall into two main classes. The
first is appropriate when the irregularity is an intrinsic feature of the process under inves-
tigation as when studying, for example, the intensities of tropical storms or earthquakes.
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In this case it is often natural to consider models based on marked point processes (see
Section 6.3 for a brief introduction).

The second class of models is more appropriate when the irregularity is not a feature
of the process itself, but rather of the sampling regime: there is an underlying stochastic
process Y (·) that could in principle be observed at any time, but for which observations are
available only at times t1, t2, . . . , tN . Accordingly we now discuss models for continuous-
time processes. A more detailed introductory treatment can be found in Ross (2003,
Chapter 10).

In all of the models considered so far for regularly spaced series, a fundamental
component has been the white noise sequence (δt ): without this, the series would be
completely predictable and hence uninteresting. If we attempt to generalise the concept
of white noise to a process δ(·) in continuous time, we must allow two values of δ(·)
separated by an arbitrarily small time interval to be completely uncorrelated. This has some
unexpected consequences. For example, it can be shown (Priestley, 1981, Section 3.7) that
if such a process has finite variance then, with probability 1, any weighted time average
of the form

∫ b

a
w(t)δ(t)dt is equal to zero: again, this is uninteresting. The only escape is

to allow the process variance to be infinite. Mathematically, this enables the development
of a satisfactory theory, but it is difficult to visualise the appearance of realisations from
such a process.

In contrast to white noise, the random walk process can be extended to a continuous-
time setting without difficulty. From the definition at (5.23), it is easy to show that for any
nonoverlapping time intervals (t1, t1 + h1) and (t2, t2 + h2), the increments Yt1+h1 − Yt1

and Yt2+h2 − Yt2 are zero-mean, uncorrelated random variables with variances h1σ
2
δ and

h2σ
2
δ respectively. If in addition the (δt ) are Gaussian, then the increments are not just

uncorrelated but independent. The extension to continuous time is now straightforward.
The analogue of a Gaussian random walk is a process W(·) such that for h> 0 and all
t , W(t + h) − W(t) ∼ N(0, hσ 2) and the increments in nonoverlapping time intervals
are independent. Such a process is called a Wiener process or Brownian motion . Like the
random walk, it is nonstationary. Its structure is also easy to visualise: given an initial value
Y (t0) = y(t0), values at any discrete set of time points t0 < t1 < · · · < tN can be generated
by cumulating increments that are sampled from the appropriate normal distributions.

Brownian motion forms the basis of many models for continuous-time processes.
However, many of the model equations require mathematical notation that is beyond the
scope of this book. We therefore give just a brief summary.

Probably the most widespread model for continuous-time stationary processes is the
analogue of the AR(1), referred to variously as the CAR(1) or Ornstein–Uhlenbeck pro-
cess. The autocorrelation function of this process is, for all lags h ∈ R,

ρ(h) = exp(−α|h|) (5.26)

for some parameter α > 0. There is a close connection with the ordinary AR(1): to see
this, consider what would happen if we observed a CAR(1) process every � time units.
The lag 1 autocorrelation of the resulting regularly spaced series would be ρ(�) =
exp(−α�) = φ, say; at lag 2 we would obtain ρ(2�) = exp(−2α�) = φ2 and, in gen-
eral, at lag k we would obtain ρ(k�) = φ|k|. However, this has exactly the same form as
the ACF of the AR(1) process given in Section 5.1.1. It follows that sampling a CAR(1)
process at regular time intervals yields an ordinary AR(1) process. Notice, however,
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that since φ = exp(−α�) here, we must have 0 < φ < 1: the process cannot produce
negative autocorrelations.

Continuous-time analogues of more general ARMA models are also available
(Priestley, 1981, Section 3.7; Brockwell and Davis, 2002, Section 10.4). As in
the AR(1) case, their properties are broadly similar to those of the corresponding
discrete-time versions: for example, the continuous-time AR(2) process can generate
quasi-periodic behaviour. There are some surprises, however: for example, sampling
a continuous ARMA(2,1) process at regular intervals can yield a discrete AR(1) with
a negative coefficient – and sampling a continuous AR(p) process yields a discrete
ARMA(p,p − 1) (Harvey, 1989, Section 9.1). Long-memory models for continuous-time
processes include fractional Brownian motion (Beran, 1994, Section 2.4), which gener-
alises the idea of fractional differencing discussed in Section 5.3; continuous fractional
ARIMA models have been developed by Tsai and Chan (2005). More generally, in
the statistical literature there is currently considerable interest in models defined by
stochastic differential equations (SDEs); Cox and Miller (1965, Chapter 5) remains an
excellent foundational reference in this area. SDEs are derived essentially by considering
the limiting behaviour of sampled versions of a process, as the sampling interval tends
to zero. They are widely used in areas such as mathematical finance, where they are able
to capture many of the features of erratic, nonstationary, high-frequency financial time
series. Their use in environmental applications is currently limited, although they are
starting to be used to represent uncertainty in deterministic physics based models: this
provides an opportunity to incorporate the known dynamics of the underlying processes
formally into an empirical analysis. For example, Tomassini et al. (2009) used a CAR(1)
process representation to model variations in the parameterisation of a simple physics
based model of the climate system: the goal here was to improve the model performance,
with a particular focus on reproducing observed changes in global temperatures and
ocean heat content over the nineteenth and twentieth centuries.

An important use of continuous-time models is to describe the error structure in
regressions involving irregularly spaced time series. Under the assumption that the error
process is stationary, knowledge of its autocorrelation structure enables the fitting of
models by maximum likelihood or generalised least squares (see Section 3.3.3). In R, for
example, the nlme library (Pinheiro et al., 2008) offers the possibility of fitting regression
models with a CAR(1) error structure; other continuous-time structures can be defined
by the user if required. Identification of an appropriate structure can be achieved by
inspection of the variogram (see Section 2.1.4) of residuals from an initial least squares fit.
Equation (2.3) gives the relationship between the variogram and autocorrelation function
of a stationary process: for example, in the CAR(1) case the residual variogram is given
by v(h) = σ 2

[
1 − exp (−α|h|)], where σ 2 is the residual variance.

5.5 State space and structural models

5.5.1 Simple structural time series models

The models considered so far in this chapter have been descriptive, in the sense that they
provide a means of summarising the behaviour of a series without necessarily considering
its underlying structure. In this section we consider an alternative class of models that



208 METHODOLOGY

attempt to represent the underlying structure explicitly. The simplest nontrivial example
of such a structural time series model is given by a pair of equations:

Yt = μt + εt , (5.27)

μt = μt−1 + ht , (5.28)

where (εt ) and (ht ) are uncorrelated white noise sequences with variances σ 2
ε and σ 2

h

respectively. The first equation here is the fundamental trend equation (3.1), according to
which the observations can be regarded as a contaminated version of the underlying trend.
The second equation asserts that the trend (μt ) itself evolves stochastically as a random
walk. If σ 2

h is small, successive values of the trend will tend to be similar – although over
longer periods of time, larger changes will occur. For this reason, the model defined by
(5.27) and (5.28) is called the local level model .

An alternative to the local level model is the local linear trend model, which asserts
that the trend at any time point is approximately linear. In place of (5.28), the local linear
trend model substitutes a pair of equations:

μt = μt−1 + βt−1 + ht , (5.29)

βt = βt−1 + zt , (5.30)

where (ht ) and (zt ) are white noise sequences with variances σ 2
h and σ 2

z respectively,
that are uncorrelated with each other and with (εt ). The motivation for (5.29) and (5.30)
is that if the trend was exactly linear then, for all t , we would have μt = μt−1 + β, say,
where β is the trend slope (i.e. change per unit time): (5.30) allows the slope to vary over
time, which may be more realistic.

Structural models such as these are appealing since the model components are directly
interpretable and often immediately relevant to the aim of an analysis. For this reason, the
models are widely used in a variety of application areas. Environmental examples include
an analysis of Nile river flows using a local level model with an added changepoint (Pole,
West and Harrison, 1994, Section 7.1), an analysis of polychlorinated biphenyl (PCB)
concentrations in salmonids using a local linear trend model (Conrad Lamon, Carpenter
and Stow, 1998) and analysis of sea surface temperatures using a more complicated model
incorporating seasonal effects (Young et al., 1991). However, despite the immediate appeal
of the models, some care is required since their properties may not always be appropriate
for the problem at hand. To illustrate this for the local level model, consider that in (5.28)
we can write (1 − B)μt = ht , where B is the backshift operator. Now, if we apply the
operator (1 − B) to both sides of (5.27), we obtain

(1 − B)Yt = (1 − B)μt + (1 − B)εt = ht + εt − εt−1.

As a sum of white noise terms, the right-hand side here is clearly a stationary process,
and it is easily verified that its autocorrelation function is

ρ(k) =
⎧⎨
⎩

1, k = 0,

−σ 2
ε /

(
σ 2

h + 2σ 2
ε

)
, |k| = 1,

0, otherwise.

This is the autocorrelation function of an MA(1) process (see Section 5.1.2): we can
therefore conclude that, for the local level model, the first differences of the observations
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(Yt ) are indistinguishable from an MA(1) and hence that the observations themselves
can be regarded as ARIMA(0,1,1). This argument is formalised in Harvey (1989, Section
2.5.3): the equivalent ARIMA specification is called the reduced form of the structural
model. A consequence of this equivalence is that, in the long run, any realisation from a
local level model will move arbitrarily far from its starting point (recall the discussion in
Section 5.2.1): if this is deemed to be unrealistic, then the model should be applied with
caution. Similar comments apply to the local linear trend model, for which the reduced
form is ARIMA(0,2,2). Thus, for example, Zuur, Tuck and Bailey (2003) advocate that
in the context of fisheries research, forecasts from such models should be restricted to
relatively short lead times to avoid unrealistically large error variances. This is not true of
all structural models, of course: in broad terms, the reason for the behaviour of the local
level and local linear trend models is that they both have random walks embedded within
them, and there are plenty of alternative models that do not share this feature. However,
the discussion above illustrates the need to think carefully about the properties of such
models before applying them indiscriminately.

5.5.2 The state space representation

Both of the models in the previous subsection can be written, using matrices, as a pair of
equations of the form

Yt = Ztαt + εt , (5.31)

αt = M tαt−1 + ηt , (5.32)

where:

• Yt is a p × 1 vector of observations at time t : for both the local level and local
linear trend models, there is only one observation at each time point so that p = 1.

• αt is an m × 1 state vector at time t , which is typically unobserved. For the local
level model, m = 1 and the state vector is αt = μt . For the local linear trend model,
m = 2 and the state vector is

αt =
(

μt

βt

)
.

• Zt is a p × m matrix: for the local level model where p = m = 1, this is just a
scalar taking the value 1 for all t , and for the local linear trend model where p = 1
and m = 2 it is given by

(
1 0

)
.

• (εt ) is an uncorrelated sequence of zero-mean random vectors such that the p × p

covariance matrix of εt is H t : since p = 1 in both of the models above, H t = σ 2
ε

is just a scalar.

• M t is an m × m matrix: for the local level model this is equal to 1 for all t and
for the local linear trend model it is given by

M t =
(

1 1

0 1

)
.
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• (ηt ) is an uncorrelated sequence of zero-mean random vectors that is also
uncorrelated with (εt ), and is such that the m × m covariance matrix of ηt is Qt .
For the local level model we have Qt = σ 2

h and for the local linear trend model
we have

Qt =
(

σ 2
h 0
0 σ 2

z

)
.

The rather general formulation given by (5.31) and (5.32) is called the state space form
of a time series model. Equation (5.31) is called the measurement equation , and describes
the relationship between the observations (Yt ) and the underlying state of the system as
represented by the sequence (αt ). Equation (5.32) is called the transition equation , and
describes the time evolution of the state vector itself.4 By allowing Yt to be a vector, the
framework is capable of handling multivariate time series: in environmental applications
these may arise in a variety of contexts including space–time data (in which observations
are made on a variable of interest at several different locations), multispecies data and
situations in which various types of indirect measurements are made on some underlying
quantity of interest.

The transition equation (5.32) may at first sight appear restrictive, since the state vector
αt is only allowed to depend on a single previous time point. However, this apparent
restriction is illusory since dependence on any number of lags can be represented by
appropriate augmentation of the state vector. This is illustrated in the following example.

Example 5.9
Suppose that we are interested in observing a stationary zero-mean AR(2) process (Xt ),
but that the values of (Xt ) cannot be measured exactly: instead, at each time t , we observe

Yt = Xt + εt , (5.33)

where (εt ) is a white noise sequence. In this case, we could think of Xt as the unobservable
state of the system at time t . As an AR(2) process, (Xt ) satisfies

Xt = φ1Xt−1 + φ2Xt−2 + δt ,

which is not in the form (5.32) of a state space transition equation. However, if we write

αt =
(

Xt

Xt−1

)
, (5.34)

then it is easily verified that the sequence (αt ) satisfies

αt =
(

φ1 φ2

1 0

)
αt−1 +

(
δt

0

)
,

which is in the required form. The representation is completed via the measurement
equation

Yt = (
1 0

)
αt + εt .

4 Some authors use a slightly different, but equivalent, formulation. For example, Durbin and
Koopman (2001) use different time subscripts on the state vectors in the transition equation (their
equation 4.1). Effectively, their ηt is our ηt+1 and their T t is our M t+1.
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It is instructive to obtain the reduced form of the model for the observations (Yt ) in this
example. As with the local level model, this can be done using the backshift operator:
first note that (1 − φ1B − φ2B

2)Xt = δt . Applying the operator (1 − φ1B − φ2B
2) to

both sides of (5.33) now yields

(1 − φ1B − φ2B
2)Yt = (1 − φ1B − φ2B

2)Xt + (1 − φ1B − φ2B
2)εt ,

so that Yt = φ1Yt−1 + φ2Yt−2 + δt + εt − φ1εt−1 − φ2εt−2.

This expression contains two autoregressive terms, along with contributions from white
noise sequences at lags 1 and 2. It may be inferred, therefore, that (Yt ) is stochastically
equivalent to an ARMA(2,2) process. A rigorous demonstration of this is beyond the scope
of this book – the argument is essentially the same as that required for the predator–prey
model in Example 5.6 and for the local level model above. Thus we have learned that
if we observe an AR(2) process contaminated with white noise (due, for example, to
measurement error), the observations can be regarded as ARMA(2,2). Similar methods
can be used to find the properties of more general ‘contaminated ARMA’ processes. �

As this example suggests, a wide range of dependence structures can be handled in
the state space framework. Indeed, it can be shown that any model in the AR(I)MA family
can be represented in this way, so that the class of state space models is at least as wide as
the class of AR(I)MA models. The state space representation of AR(I)MA models is not
unique: see Brockwell and Davis (2002, Section 8.2) and Gardner, Harvey and Phillips
(1980) for some alternative formulations.

The local level and local linear trend models can be regarded as ‘dynamical’, in the
sense that the underlying parameters (for example the mean level and the trend slope) are
allowed to vary over time. The state space form allows many other common structures
to be handled in a similar way: for example, dynamic representations of seasonality and
regression relationships are available (Durbin and Koopman, 2001, Sections 3.2 and 3.6).
Dynamic regressions can be regarded as an alternative means of specifying varying coef-
ficient models (Section 4.3.3) to allow the strength of a regression relationship to change
over time: this is often a natural way of representing the fact that relationships within
a system may respond to changes in the wider environment (Pole, West and Harrison,
1994, Section 1.4; Young, 1998). It is achieved by allowing the coefficient vector β in a
model such as (3.10) to vary so that the regression equation at time t becomes

Yt = xtβ t + εt .

This can be accommodated within the state space framework by setting αt = β t and
Zt = xt in (5.31), and specifying a model for the time evolution of the regression coeffi-
cients (β t ). Notice that in this case the sequence of matrices (Zt ) is itself time-varying, by
contrast with the state space representation of the local level and local linear trend models.
There are also situations in which the sequence (M t ) in the transition equation (5.32),
and the covariance matrices (H t ) and (Qt ), may be time-varying. A notable example is
in the state space representation of continuous-time ARMA processes observed at irregu-
lar intervals (Harvey, 1989, Section 9.1). For environmental applications of time-varying
regression, see van der Wal and Janssen (2000) and Conrad Lamon, Carpenter and Stow
(2000). The latter authors fit an extension of the local linear trend model to PCB concen-
tration data from eight species of fish and one species of bird: their model represents an
underlying trend that is common to all species, with individual species-specific departures
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from this underlying trend that themselves are allowed to change over time. Dynamic
factor analysis is a related approach that uses a state space representation to identify
shared components (such as common trends) in multivariate series; this is discussed in
Section 6.2 and explored further in Chapter 9.

As well as having the flexibility to represent a wide variety of statistical model
structures, the state space form may be used to represent the known dynamics of a
system, particularly when these dynamics are highly structured. The following example,
which is a slightly adapted and simplified version of a model from Besbeas et al. (2002)
for bird census data, illustrates this.

Example 5.10
Suppose we want to estimate population numbers of some species of bird for which both
males and females reach sexual maturity one year after hatching. Let N

(J)
t , N

(F)
t and

N
(M)
t denote respectively the total number of juvenile, adult female and adult male birds

in year t . Also, let μ denote the average number of young per female, and let π denote the
proportion of females in the population. Finally, let λJ and λA denote the annual survival
probabilities of juvenile and adult birds respectively, which are assumed to be the same
for both males and females. Then, assuming no migration into or out of the population,
the number of adult females in year t is equal to the number of adult survivors from
the previous year, plus the number of juvenile females surviving to sexual maturity. On
average, we therefore have

N
(F)
t = λAN

(F)
t−1 + λJ πN

(J )
t−1. (5.35)

For adult males we obtain a similar expression:

N
(M)
t = λAN

(M)
t−1 + λJ (1 − π)N

(J )
t−1. (5.36)

For juveniles, we know that N
(J)
t = μN

(F)
t on average, and hence we expect

N
(J)
t = μλAN

(F)
t−1 + μλJ πN

(J )
t−1. (5.37)

Now define the ‘state’ of the population in year t to comprise the numbers of adult
females, adult males and juveniles. This can be represented via a state vector

αt =
(

N
(F)
t N

(M)
t N

(J )
t

)′
,

and its time evolution is given by the relationship

αt =

⎛
⎜⎝

N
(F)
t

N
(M)
t

N
(J )
t

⎞
⎟⎠ =

⎛
⎝ λA 0 λJ π

0 λA λJ (1 − π)

μλA 0 μλJ π

⎞
⎠αt−1 +

⎛
⎜⎝

η
(F)
t

η
(M)
t

η
(J )
t

⎞
⎟⎠ . (5.38)

The final term here is a random vector accounting for deviations from the average
relationships given by (5.35) to (5.37). In general, one might expect these deviations
to be correlated due, for example, to external factors (such as weather conditions) that
simultaneously affect the survival of all birds.

Equation (5.38) is a transition equation in the same form as (5.32). To complete the
state space representation of the system, we must derive a measurement equation that
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reflects what is actually observed. Typically, bird numbers are estimated on the basis of
surveys or censuses that may gather more or less detailed information. For instance, a
survey based on the number of nest sites can be regarded as estimating the number of
breeding (i.e. adult) females: in this case, we could denote by Yt the estimated number
of adult females in year t and write

Yt = (
1 0 0

)
αt + εt ,

where εt accounts for the survey error. If, on the other hand, the survey estimates the total
number of adult birds each year (N(F)

t + N
(M)
t ) without differentiating between males and

females, we could write
Yt = (

1 1 0
)
αt + εt .

A third possibility is that a survey estimates numbers of adult females and males sepa-
rately. In this case, the observations (Yt ) are bivariate and, in an obvious notation, the
survey estimates can be linked to the underlying population numbers as

Yt =
(

Y
(F)
t

Y
(M)
t

)
=
(

1 0 0
0 1 0

)
αt +

(
ε
(F)
t

ε
(M)
t

)
.

�

The above example illustrates the ability of the state space form both to represent
known process dynamics and to link the process of interest with what is actually observed.
This latter feature makes the state space framework particularly useful whenever quantities
of interest cannot be measured directly. This has been recognised in the field of ecological
population dynamics in particular: with appropriate modifications, models similar to that
described above have been used in a variety of ecological contexts (see Section 5.6
for references).

5.5.3 The Kalman filter

Suppose now that we have a time series model in state space form and that the various
quantities in the model equations (5.31) and (5.32) are known (estimation of these quanti-
ties is covered in the next subsection). Suppose also that observations Y1 = y1, . . . , YT =
yT are available. Depending on the application, one or more of the following may be
of interest:

• Prediction of αT +1, . . . , αT +	 or of YT +1, . . . , YT +	.

• Filtering , which in this context means estimating the current state of the system αT .

• Smoothing , which means using the data y1, . . . , yT to estimate the entire history
α1, . . . , αT of the underlying state vector.

In the subsequent development we will use the notation α̂t1|t2 to denote an estimate of
the state of the system at time t1, derived from all observations up to and including time
t2 (which may be greater than, less than or equal to t1). We will denote by P t1|t2 the
covariance matrix of the associated estimation error αt1 − α̂t1|t2 . Similarly, for t1 > t2,
Ŷt1|t2 will denote a prediction of Yt1 made at time t2, with associated error covariance
matrix F t1|t2 .
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We consider the prediction problem first. As when forecasting with ARMA models
(see Section 5.1.7), it seems reasonable to base predictions on the conditional expectations{
E
(
αT +j |Y1, . . . , YT

)
: j = 1, . . . , 	

}
. Suppose that at time T we have computed α̂T |T =

E (αT |Y1, . . . , YT ) (this computation is discussed below). According to the notation just
defined, the covariance matrix of the associated error αT − α̂T |T is P T |T . Then, from the
transition equation (5.32), the conditional expectations of αT +1, . . . ,αT +	 are

α̂T +1|T = MT +1α̂T |T ,

α̂T +2|T = MT +2α̂T +1|T = MT +2MT +1α̂T |T (5.39)

and so on. The one-step-ahead prediction error is thus

αT +1 − α̂T +1|T = MT +1αT + ηT +1 − MT +1α̂T |T

= MT +1
(
αT − α̂T |T

) + ηT +1

and the covariance matrix of this quantity is

P T +1|T = MT +1E
{(

αT − α̂T |T
) (

αT − α̂T |T
)′}

M ′
T +1 + QT +1

= MT +1P T |T M ′
T +1 + QT +1 (5.40)

(this follows from the transition equation (5.32), coupled with the fact that ηT +1 is uncor-
related with anything prior to time T + 1). The covariance matrix of subsequent prediction
errors can be computed in a similar way.

From the predictions α̂T +1|T , . . . , α̂T +	|T , the measurement equation (5.31) allows
predictions of the associated observation vectors YT +1, . . . , YT +	 to be computed as
ŶT +j |T = ZT +j α̂T +j |T . The error associated with ŶT +j |T is

YT +j |T − ŶT +j |T = ZT +jαT +j + εT +j − ZT +j α̂T +j |T

= ZT +j

(
αT +j − α̂T +j |T

) + εT +j ,

which has covariance matrix

F T +j |T = ZT +jP T +j |T Z′
T +j + H T +j .

We now turn to the problem of filtering (i.e. estimating αT on the basis of observations
y1, . . . , yT ). Suppose first that we have calculated α̂T −1|T −1 = E (αT −1|Y1, . . . , YT −1)

and the associated error covariance matrix P T −1|T −1. From these, we can calculate one-
step-ahead predictions α̂T |T −1 and ŶT |T −1 and associated error covariance matrices as
described above. In principle, we can also obtain the conditional expectation and covari-
ance matrix of the combined state and observation vectors at time T : for example, the
conditional expectation is

E

[(
αT

YT

)∣∣∣∣Y1, . . . , YT −1

]
=
(

α̂T |T −1

ŶT |T −1

)
.

For the moment, suppose also that the quantities (εt ) and (ηt ) in (5.31) and (5.32)
have multivariate normal distributions. In this case, the conditional joint distribution of(

α′
T Y′

T

)′
is itself multivariate normal, and is fully specified by its expectation and
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covariance matrix. To calculate α̂T |T , all that is required is to condition additionally on
YT in this joint distribution. This can be done using standard results for the multivariate
normal distribution (see, for example, Durbin and Koopman, 2001, Section 2.13). We find
(Harvey, 1989, Section 3.2)

α̂T |T = α̂T |T −1 + P T |T −1Z
′
T F −1

T |T −1

(
yT − ŶT |T −1

)
, (5.41)

with associated error covariance matrix

P T |T = P T |T −1 − P T |T −1Z
′
T F −1

T |T −1ZT P T |T −1. (5.42)

In fact, these results do not depend critically on the multivariate normal assumption: if
this assumption does not hold then the estimated state vectors are no longer conditional
expectations, but instead are best linear unbiased predictors (BLUPs) in the sense that
they have the smallest possible mean squared error among all linear functions of the
observations – see Harvey (1989, Section 3.2.3), Brockwell and Davis (2002, Section
8.4) and Durbin and Koopman (2001, Section 4.2).

Equations (5.39), (5.40), (5.41) and (5.42) together make up the Kalman filter . This
was originally developed for efficient online updating in response to new data: the idea
is to start with an initial assessment of the system state and associated error covariance
matrix, say α̂0|0 and P 0|0, use these to calculate α̂1|0 and P 1|0 and then, as successive
observations become available, calculate the sequence

{
α̂1|1, P 1|1, α̂2|1, P 2|1

}
,
{
α̂2|2, P 2|2, α̂3|2, P 3|2

}
, . . . .

A particularly attractive feature of this algorithm is its computational tractability. In gen-
eral, the number of calculations required to process a series of length T is roughly
proportional to T , because the calculations required to incorporate each new observation
depend only on that observation itself and on the latest existing prediction: it is not nec-
essary to reprocess the entire data set each time. Notice also that a small modification
of the algorithm will handle missing observations: if Yt is not observed then there is
no information from time t to update α̂t |t−1, so we have α̂t |t = α̂t |t−1 and P t |t = P t |t−1.
Slightly more complicated techniques are required if some, but not all, observations are
missing at a particular time point – see Harvey (1989, Section 3.4.7).

To implement the Kalman filter in practice, the only remaining problem is to choose
the initial values α̂0|0 and P 0|0. If the transition equation (5.32) defines a stationary
process, these values can be taken from the overall properties of the process. For example,
for the contaminated AR(2) process in Example 5.9, the state vector is given by (5.34).
Since the elements of this state vector are consecutive values in a stationary AR(2) process
with zero mean, in this case we could take

α̂0|0 =
(

0
0

)
and P 0|0 =

(
γ (0) γ (1)

γ (1) γ (0)

)
,

where γ (·) denotes the autocovariance function of the process. Gardner, Harvey and
Phillips (1980) give a general algorithm for finding the value of P 0|0 in stationary state
space models; see also Harvey (1989, p. 121).

If the transition equation does not define a stationary process, initialisation is slightly
more complicated. The simplest solution is to set any nonstationary elements of α̂0|0 to
some arbitrary value and to set the corresponding submatrix of P 0|0 to κI , where I is an
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identity matrix of appropriate dimension and κ is a large positive number. The allocation
of large variances to the nonstationary components represents, in a crude sense, the fact
that their values are highly uncertain. Although the arbitrary choice of initial values may
seem unsatisfactory, the effect is typically confined to the first few time points, so that
the approach may perform acceptably if T is large. A more rigorous solution extends the
idea to obtain the exact initial Kalman filter : this allows κ to tend to infinity (thereby
representing complete ignorance of the initial state of the nonstationary components) and
explicitly identifies a set of time points {0, . . . , tINIT} that are affected by the unknown
initial conditions. In general, the details are nontrivial; see Durbin and Koopman (2001,
Chapter 5). However, the following example illustrates the basic principle.

Example 5.11
Consider the local level model introduced at the beginning of Section 5.5.1. We have
seen that in the state space representation of this model, the system matrices Zt and M t

in (5.31) and (5.32) are both scalars that are equal to 1 and that the variances H t and Qt

are equal to σ 2
ε and σ 2

h respectively. Starting with α̂0|0 and P0|0, the Kalman scheme for
this model involves the recursive calculation of

α̂t |t−1 = α̂t−1|t−1 and Pt |t−1 = Pt−1|t−1 + σ 2
h ;

Ŷt |t−1 = α̂t |t−1 and Ft |t−1 = Pt |t−1 + σ 2
ε ;

α̂t |t = α̂t |t−1 + Pt |t−1
(
yt − Ŷt |t−1

)
Ft |t−1

and Pt |t = Pt |t−1

(
1 − Pt |t−1

Ft |t−1

)
.

If we initialise this scheme with α̂0|0 = 0 and P0|0 = κ , then we obtain

α̂1|0 = 0; P1|0 = κ + σ 2
h ;

Ŷ1|0 = 0; F1|0 = κ + σ 2
h + σ 2

ε ;

α̂1|1 =
(
κ + σ 2

h

)
y1

κ + σ 2
h + σ 2

ε

and P1|1 = σ 2
ε

(
κ + σ 2

h

)
κ + σ 2

h + σ 2
ε

.

If we now let κ tend to infinity, we see that P1|0 and F1|0 both tend to infinity themselves;
however, α̂1|1 tends to Y1 and P1|1 tends to σ 2

ε . Thus the Kalman filter for this particular
model can be initialised exactly by setting α̂1|1 = Y1 and P1|1 = σ 2

ε . This contrasts with
the stationary situation, in which the filter can be initialised exactly at time t = 0. �

The filtering problem delivers an estimate of αt based on observations up to time t :
as such, it is relevant for online assessment of the state of a system. However, subsequent
observations may also contain relevant information, which provides the opportunity for
online assessments to be amended retrospectively. This procedure is known as smoothing ,
for reasons that will become apparent below. Here we discuss offline or fixed-interval
smoothing, in which the aim is to obtain a single set of estimates of α1, . . . ,αT based
on observations Y1, . . . , YT . In the context of a trend analysis, it provides a means of
assessing the underlying changes in a system on the basis of all the available data.

In the notation used above for the filtering problem, the aim of fixed-interval smooth-
ing is to find estimates {α̂t |T : t = 1, . . . , T } with associated error covariance matrices
{P t |T : t = 1, . . . , T }. Given observations to time T , the Kalman filter provides a set
of estimates {α̂t |t : t = 1, . . . , T } and covariance matrices {P t |t : t = 1, . . . , T }: for the
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final time point T , the filtered and smoothed quantities are the same. For time T − 1,
however, we have an opportunity to update α̂T −1|T −1 using the relevant information from
time T (which, due to the specific form of the state space model, is entirely contained
in the Kalman filter output and does not depend further upon YT ). This new estimate
can then be used to update α̂T −2|T −2, and we can proceed in turn to update all of the
remaining estimates. For t = T − 1, T − 2, . . . , 1 the required calculations are (Harvey,
1989, Section 3.6.2)

α̂t |T = α̂t |t + P t |tM ′
t+1P

−1
t+1|t

(
α̂t+1|T − M t+1α̂t |t

)
(5.43)

and P t |T = P t |t + P t |tM ′
t+1P

−1
t+1|t

(
P t+1|T − P t+1|t

)
P −1

t+1|tM t+1P t |t .

The resulting estimates {α̂t |T } can be regarded as conditional expectations {E(αt |
Y1, . . . , YT )} under the assumption of multivariate normality, or as BLUPs otherwise.
Missing observations can also be estimated, using a slight modification of the algorithm
(Durbin and Koopman, 2001, Section 4.8). Notice that the algorithm requires storage of
the quantities {P t+1|t} in addition to {α̂t |t } and {P t |t } during the initial application of the
Kalman filter.

In principle, the formulae given above provide a means of filtering and smoothing in
any state space model for which the parameters are known. Modern computer implemen-
tations, however, contain refinements designed to speed up the calculations and improve
the numerical stability of the algorithms – see Durbin and Koopman (2001, Sections 4.3
and 6.4) for examples.

5.5.4 Parameter estimation

In practice, of course, state space models usually contain parameters that must be estimated
from the data. As in Section 5.1.5, we consider the method of maximum likelihood under
the assumption of Gaussianity, which here means that the (εt ) and (ηt ) in the models have
multivariate normal distributions. Let θ denote the vector of unknown parameters, let y
denote the combined vector of all observations available to time T and let D ⊆ {1, . . . , T }
denote the set of all time indices for which at least one element of Yt is observed. In
addition, suppose for the moment that the initial state vector α0 is known. Then, in exactly
the same way as for univariate observations (see Equation (3.65)), the log-likelihood can
be written as a sum of contributions from each time point:

	 (θ; y,α0) =
∑
t∈D

log ft

(
yt |

{
yj : j < t

} ; θ ,α0
)
, (5.44)

where ft (·; θ , α0) (which depends explicitly upon α0 only at time t = 1) denotes the
conditional density of the observations at time t . Now under the Gaussian state space
formulation, this conditional density is multivariate normal with mean vector Ŷt |t−1 and
covariance matrix F t |t−1 (both of which potentially depend on elements of θ ). For a given
value of θ the Kalman filter can be used to calculate these quantities at all observation
times, and hence the Gaussian log-likelihood can be evaluated conditional on α0.

It remains to deal with the fact that α0 is unknown. If the transition equation (5.32)
defines a stationary process, then the exact log-likelihood function can be obtained for any
value of θ by replacing the term log f1 (y1; θ ,α0) in (5.44) with log f1

(
y1; θ , α̂0, P 0|0

)
,

where α̂0|0 and P 0|0 are the stationary mean and covariance matrix of (αt ) as in the
previous subsection (without loss of generality, we are assuming that 1 ∈ D here so
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that t = 1 is the time of the first available observation). If the state vector contains
nonstationary elements, however, this approach is not possible. In this case, one possibility
is to treat α0 as part of the model parameter vector and to maximise the Gaussian log-
likelihood with respect to both θ and α0. However, if the dimension of α0 is relatively
large compared with that of θ then this can considerably increase the computational cost
(Durbin and Koopman, 2001, Section 5.7.5). As an alternative, one might consider using
the exact initial Kalman filter of the previous subsection to handle the first few terms in the
log-likelihood; however, this leads to problems of a different kind. To illustrate the nature
of these, consider the example of the local level model where we have seen that exact
initialisation yields Ŷ1|0 = 0 and F1|0 = ∞. For this model, the Gaussian density of Y1 is

f1 (y) = 1√
2πF1|0

exp

[
−
(
y − Ŷ1|0

)2

2F1|0

]

and this tends to zero as F1|0 → ∞. Its logarithm (which is the term corresponding to
t = 1 in the log-likelihood) therefore tends to −∞, and the log-likelihood itself tends to
−∞ for all parameter values. The implication that the data contain no information about
the parameters clearly is not correct since, as we have seen, this model is stochastically
equivalent to an ARIMA(0,1,1): in principle, therefore, the parameters could be estimated
by fitting an MA(1) model to the first differences of the observations. One possible
approach is to use a modified diffuse log-likelihood to handle the initialisation of
nonstationary state space models (Durbin and Koopman, 2001, Chapter 7). An alternative
is simply to omit any observations from the computed likelihood if they are affected
by initialisation in this way (Harvey, 1989, page 127). In the context of the local level
model this is consistent with estimation under the alternative ARIMA specification since,
in this case, the initial difference at time t = 1 cannot be computed (see Section 5.2.1).

Having established that the log-likelihood can be computed for any value of θ ,
numerical methods can be used to maximise it. The expected information matrix (see
Section 3.1.6) can then be estimated by evaluating the matrix of second derivatives at
the maximum and used to construct approximate standard errors, tests and confidence
intervals for model parameters.

The computational cost of evaluating the log-likelihood at a single value of θ is essen-
tially the same as that required for the Kalman filter to process the available observations:
we have seen that this is roughly proportional to the number of distinct observation times.
This makes the approach suitable for embedding within a numerical optimisation routine
that will typically require log-likelihood evaluations at many different values of θ . Notice
also that missing data are easily handled in this framework, because the Kalman filter
provides the necessary adjustments automatically, as described in the previous subsection.
This is one argument for using state space methods to fit AR(I)MA models, as described
in Section 5.1.5. In R, the arima command uses state space methods to fit AR(I)MA
models. In addition, the StructTS command implements maximum likelihood fitting of
simple structural time series models including the local level and local linear trend models;
this can be used in conjunction with the tsSmooth command to carry out fixed-interval
smoothing based on the fitted models. The dlm library (Petris, 2009) provides access to
more general state space models.

Having fitted a state space model, standardised residuals can be computed for diag-
nostic purposes (see Section 5.1.6). For a univariate series, the standardised residual at
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time t is (Yt − Ŷt |t−1)/
√

Ft |t−1. For multivariate series, a vector of standardised residuals
can be defined as

e∗
t = F

−1/2
t |t−1

(
Yt − Ŷt |t−1

)
,

where F
−1/2
t |t−1 is a matrix square root of F−1

t |t−1 such that F
−1/2
t |t−1

[
F

−1/2
t |t−1

]′ = F −1
t |t−1. In

practice a Choleski square root (Section 3.3.3) is often used. Under the fitted model, the
components of e∗

t are uncorrelated random variables with zero mean and unit variance;
further, e∗

t and e∗
s are uncorrelated for t �= s.

Maximum likelihood is not the only method available for fitting state space models:
Bayesian methods (Section 3.1.6) are also widely used in this context (Pole, West and
Harrison, 1994; Durbin and Koopman, 2001, Chapter 8) and, in R, the dlm library has
routines for Markov chain Monte Carlo analysis of state space models. The use of a
Bayesian approach has the advantage that parameter uncertainty can be accounted for
when making predictions, as described by Davison (2003, page 568) for example: this
contrasts with the classical approach to prediction from ARMA models, in which the
parameters are treated as known (see Section 5.1.7).

5.5.5 Connection with nonparametric smoothing

If the parameters in a state space model are known, the calculations in the Kalman filter
and in fixed-interval smoothing all involve linear transformations. The smoothed estimates
{α̂t |T } defined by (5.43) are therefore linear functions of the observations y1, . . . , yt , so
that we can write α̂t |T = ∑T

j=1 W j tyj , say, where {W j t : j = 1, . . . , T } is a collection of
m × p weighting matrices. In particular, if p = 1 then the {W j t } are m × 1 vectors and
each element of α̂t |T is a weighted average of the univariate observations. This suggests
that there may be a connection with some of the nonparametric trend estimation techniques
discussed in Chapter 4. We now explore this briefly. For more details, see the thorough
review by Fahrmeir and Knorr-Held (2000).

Let α = (
α′

0 . . . α′
T

)′
be a vector containing all of the unobserved state variables

from times 0 to T . We have seen that the Kalman smoother computes the conditional
expectation α̂ = E(α|Y = y), under the assumption that Y and α have a joint multivariate
normal distribution. In this case, the conditional density of α is itself multivariate normal.
Using Bayes’ theorem, we can write this conditional density as

f (α|y) = f (y|α) f (α)

f (y)
(5.45)

where f (·) here denotes a generic density. Using the fact that the mean and mode of a
multivariate normal distribution are equal, α̂ is the point at which (5.45), or equivalently
its logarithm

log f (α|y) = log f (y|α) + log f (α) − log f (y),

is maximised. The last term here does not depend on α, so α̂ maximises

log f (α|y) = log f (y|α) + log f (α).

Now the measurement equation (5.31) implies that, under the normality assumption, the
univariate conditional distribution of Yt given α is normal with mean Ztαt (= μt , say)
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and variance Ht . Furthermore, the observations are conditionally independent given α.
We therefore have

log f (y|α) = −1

2

T∑
t=1

[
log (2πHt ) + (yt − μt )

2

Ht

]
.

Similarly, the joint density of α can be factorised as

f (α) = f (α0)

T∏
t=1

f (αt |αt−1)

and, under normality, all of the factors are multivariate normal densities. We therefore
have (ignoring terms that do not involve elements of α)

log f (α) = −1

2

[(
α0 − α̂0|0

)′
P −1

0|0
(
α0 − α̂0|0

)

+
T∑

t=1

(αt − M tαt−1)
′ Q−1

t (αt − M tαt−1)

]
.

Combining these results, we see that maximising f (α|Y) is equivalent to minimising

(
α0 − α̂0|0

)′
P −1

0|0
(
α0 − α̂0|0

)

+
T∑

t=1

[
(yt − μt )

2

Ht

+ (αt − M tαt−1)
′ Q−1

t (αt − M tαt−1)

]
, (5.46)

which can be regarded as a penalised sum of squares. We have encountered the minimi-
sation of such expressions before, in the context of spline smoothers (Section 4.1.3). In
fact, it can be shown that the cubic spline smoother is exactly equivalent to the Kalman
smoother for a local linear trend model with σ 2

h = 0 in (5.29). The smoothing parame-
ter λ in the cubic spline formulation is equal to σ 2

ε /σ 2
z in the local linear trend model.

This viewpoint provides an alternative way of choosing a smoothing parameter for spline
smoothing, since both σ 2

z and σ 2
ε can be estimated using the techniques discussed above.

For further discussion of this, see Durbin and Koopman (2001, Sections 3.11 and 9.5).
Expression (5.46) can be used to derive smoothing weights for other simple state

space models. For example, in the local level model of Section 5.5.1, the state vector αt

is just the underlying trend μt . Let μ̃ = (μ̃0 μ̃1 · · · μ̃T )′ be the trend estimate from the
Kalman smoother for this model. Then, with exact initialisation so that P 0|0 is infinite
(see Section 5.5.3 before Example 5.11), (5.46) is equal to

T∑
t=1

[
(yt − μt )

2 /σ 2
ε + (μt − μt−1)

2 /σ 2
h

]
.

Minimising this quantity with respect to μ is equivalent to minimising

T∑
t=1

[
λ (yt − μt )

2 + (μt − μt−1)
2] ,
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where now λ = σ 2
h /σ 2

ε is the signal-to-noise ratio for this model. Equating the derivatives
of this expression to zero yields the following equations for μ̃:

μ̃1 − μ̃0 = 0; (5.47)

λyt − (2 + λ)μ̃t + μ̃t−1 + μ̃t+1 = 0 (t = 1, . . . , T − 1); (5.48)

λyT − (1 + λ)μ̃T + μ̃T −1 = 0. (5.49)

Substituting (5.47) into (5.48) for t = 1 gives

λy1 − (1 + λ)μ̃1 + μ̃2 = 0. (5.50)

In matrix form, (5.48) to (5.50) can be written as Aμ̃ = λy, say, where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + λ −1 0 0 · · · 0

−1 2 + λ −1 0 · · · 0

0 −1 2 + λ −1 · · · 0
...

...
. . .

. . .
. . .

...

0 0 · · · −1 2 + λ −1

0 0 · · · 0 −1 1 + λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We therefore have μ̃ = λA−1y, so that μ̃t = λ
∑T

j=1 A−1(t, j)yj , where A−1(i, j) is the
(i, j)th element of A−1. It can be shown5 that

A−1(i, j) = [
ρT −|i−j | + ρ|i−j |−T + ρT +1−(i+j) + ρi+j−(T +1)

]
/
[(

ρ−1 − ρ
) (

ρ−T − ρT
)]

, (5.51)

where ρ =
[
2 + λ −

√
λ(λ + 4)

]
/2. (5.52)

5 This is not straightforward: it is done by writing

A = A0 + diag
(
1+λ−ρ−1 0 · · · 0 1+λ−ρ−1)

where

A0 = ρ−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −ρ 0 0 · · · 0

−ρ 1 + ρ2 −ρ 0 · · · 0

0 −ρ 1 + ρ2 −ρ · · · 0

.

.

.
.
.
.

. . .
. . .

. . .
.
.
.

0 0 · · · −ρ 1 + ρ2 −ρ

0 0 · · · 0 −ρ 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and using the Sherman–Morrison formula (Press et al., 1992, Section 2.7) along with the fact that the
(i, j)th element of A−1

0 is ρ1+|i−j |/(1 − ρ2). Equating ρ−1(1 + ρ2) with 2 + λ leads to a quadratic
equation for ρ, with two positive roots that are the reciprocals of each other; (5.52) defines the
smaller of these, lying between 0 and 1. However, (5.51) clearly yields the same result regardless
of which root is chosen.
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From (5.51) it may be verified that, for each t ,
∑T

j=1 A−1(t, j) = λ−1. Thus μ̃t is a
weighted average of the observations, with weights summing to unity. Notice also that
(5.51) can be rewritten as

[(
ρ−1 − ρ

) (
1 − ρ2T

)]−1 [
ρ2T −|i−j | + ρ|i−j | + ρ2T +1−(i+j) + ρi+j−1] .

If T is large and 0 � i + j � T , this is well approximated by ρ|i−j |/
(
ρ−1 − ρ

)
(since

|ρ| < 1 from (5.52)). Thus, away from the ends of the series, the Kalman smoother for
the local level model is effectively a Nadaraya–Watson estimator (Section 4.1.2) with a
two-sided exponential kernel.

Example 5.12
To illustrate the use of state space models for nonparametric smoothing, consider once
more the ozone concentration data of Section 1.3.4. As described there, it is of interest
to characterise potential changes in both the mean and the seasonal cycle of these data,
so a decomposition into ‘trend’, ‘seasonal’ and ‘irregular’ components would be useful.
For regularly spaced series, a simple method for carrying out such a decomposition was
described in Section 2.3.4; the STL procedure in Section 4.3.1 puts this on a more formal
footing. However, the stl command in R requires regularly spaced series with no miss-
ing values. When there are large amounts of missing data (as with the ozone series), the
close connection between nonparametric regression and fixed-interval smoothing provides
an appealing alternative framework within which to think about time series decomposi-
tion. Continuous-time state space models (Harvey, 1989, Chapter 9) also provide the
opportunity to handle ‘genuinely’ irregular series, although the implementation is slightly
more complicated.

For application to daily ozone concentrations, Gaussian state space models have the
potential drawback that they can generate negative values. Data transformation might
be considered to avoid this problem, for example by taking logarithms as discussed in
Section 3.3. However, the logarithms of the ozone data have a distribution (not shown)
that is strongly negatively skewed. On the whole, then, since parameter estimation will
be carried out using Gaussian likelihood methods, it seems more appropriate to model
the untransformed data in the first instance. For the purposes of decomposing the series
into interpretable components, this is likely to be perfectly adequate. Some caution is
needed, however, if the fitted models are to be used to produce long-term predictions
of future ozone concentrations, since there is no guarantee that these predictions will
remain non-negative.

To decompose the series into its components, we start by writing down a plausible
representation of the system. Let Y ∗

t denote the actual mean ozone concentration on day
t ; then one might consider a model for (Y ∗

t ) of the form

Y ∗
t = μt + st + ηt , (5.53)

where μt , st and ηt represent respectively the trend, seasonal and irregular components.
However, in practice it is difficult to measure ozone concentrations accurately, so the
observed ozone concentration Yt can be written as

Yt = Y ∗
t + εt , (5.54)

where εt is the measurement error. As usual, initially the measurement errors are assumed
to form a white noise sequence with variance σ 2

ε .
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Having written down the skeleton of a plausible structural model, we consider the
individual components in more detail as follows:

1. Trend component . Since (μt ) represents a trend it is natural to consider a non-
stationary representation of it. Furthermore, for monitoring purposes it is helpful
to use models that will support statements such as ‘ozone concentrations are cur-
rently changing at an underlying rate of x units per year’. The local linear trend
model (see Section 5.5.1) is particularly convenient in this respect, since the slope
component (βt ) is directly interpretable as the ‘underlying rate’ of such statements.

In the context of a trend–seasonal–irregular decomposition, it is also natural
to require that the trend component varies smoothly in time. With a local linear
trend model for (μt ), this can be achieved by setting the variance σ 2

h of the level
innovations to zero (Durbin and Koopman, 2001, Section 3.2.1). The connection
with spline smoothing, as discussed above, also makes this an appealing choice.
Thus, to model the trend μt , we introduce an extra unobserved slope component
βt and write

(
μt

βt

)
=
(

1 1
0 1

)(
μt−1

βt−1

)
+
(

0
zt

)
, (5.55)

where (zt ) is a white noise sequence with variance σ 2
z .

2. Seasonal component . Figure 1.4 suggests that the seasonality in the ozone series is
rather smooth and regular. If the seasonal cycle, represented by st in (5.53), were
identical from one year to the next then, as in Section 3.2, it could be modelled
using a cosine function: st = cos [2πω(t − t0)], say, where ω = 1/365.25.6 It is
not immediately obvious that this can be represented in the state space framework.
Notice, however, that st = cos [2πω(t − t0)] can be written as

cos {2πω [(t − 1) − t0] + 2πω}
= cos {2πω [(t − 1) − t0]} cos 2πω − sin {2πω [(t − 1) − t0]} sin 2πω

= st−1 cos 2πω − s∗
t−1 sin 2πω, say,

where s∗
t = sin [2πω(t − t0)]. A similar application of trigonometric identities

yields
s∗
t = st−1 sin 2πω + s∗

t−1 cos 2πω.

Thus, a fixed seasonal cycle (st ) can be modelled within the state space framework
by introducing an extra component (s∗

t ) and writing

(
st

s∗
t

)
=
(

cos 2πω − sin 2πω

sin 2πω cos 2πω

)(
st−1

s∗
t−1

)
= 


(
st−1

s∗
t−1

)
, say. (5.56)

To allow the seasonal cycle to evolve over time, one possible approach is to add
a random innovation term to the right-hand side of (5.56). However, the process
so defined is nonstationary (Harvey, 1989, page 40): in the long run, therefore,
it will move arbitrarily far from its starting values. This seems unnatural in the
present context, where the seasonality in ozone is attributable primarily to the

6 The cycle length of ω−1 = 365.25 days accounts for leap years.
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intensity of ultraviolet radiation (see Section 1.3.4) and is therefore unlikely to
change much over time. A stationary process can be obtained by replacing 


with ρ
 before adding a random innovation, for some scalar ρ with |ρ| < 1.
Unfortunately, this is not satisfactory either: being stationary, long-run forecasts
from such a process converge to zero rather than to an average seasonal cycle.
A solution is to write the seasonal component of the ozone series explicitly as
a sum of two processes, the first being a deterministic cycle of the form (5.56)
and the second a stationary process representing time-varying deviations from
this deterministic cycle. Thus we write st = ut + vt , introduce two new processes(
u∗

t

)
,
(
v∗

t

)
in place of

(
s∗
t

)
in (5.56) and consider (ut ) , (vt ) ,

(
u∗

t

)
and

(
v∗

t

)
to

evolve according to the transition equations
(

ut

u∗
t

)
=

(
cos 2πω − sin 2πω

sin 2πω cos 2πω

)(
ut−1

u∗
t−1

)

and (
vt

v∗
t

)
= ρ

(
cos 2πω − sin 2πω

sin 2πω cos 2πω

)(
vt−1

v∗
t−1

)
+
(

τt

τ ∗
t

)

for some |ρ| < 1. Here, (τt ) and
(
τ ∗
t

)
are further white noise sequences, each with

variance σ 2
τ .

3. Irregular component . The variograms in Figure 2.4 suggest that ozone concen-
trations on successive days are autocorrelated. To keep things simple in the first
instance, we therefore consider an AR(1) model for the irregular component (ηt )

in (5.53):
ηt = φηt−1 + δt ,

where |φ| < 1 and (δt ) is a white noise sequence with variance σ 2
δ .

Putting all of these components together, we can define a state vector for the required
decomposition as αt = (

μt βt ut u∗
t vt v∗

t ηt

)′
. In this case the observation equation

(5.54) can be written as
Yt = (1 0 1 0 1 0 1)αt + εt

and the transition equation for (αt ) is αt = Mαt−1 + ηt , with

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 cos 2πω − sin 2πω 0 0 0
0 0 sin 2πω cos 2πω 0 0 0
0 0 0 0 ρ cos 2πω −ρ sin 2πω 0
0 0 0 0 ρ sin 2πω ρ cos 2πω 0
0 0 0 0 0 0 φ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and ηt = (
0 zt 0 0 τt τ ∗

t δt

)′
. The white noise terms zt , τt , τ ∗

t and δt are taken to be
mutually uncorrelated, as is standard in this kind of setting (see, for example Harvey,
1989, page 171).

This state space model contains six unknown parameters: four white noise variances
σ 2

ε , σ 2
z , σ 2

τ and σ 2
δ , and two further parameters ρ and φ. These can be estimated using max-

imum likelihood as described in Section 5.5.4. This has been done in R using the dlmMLE
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routine in the dlm library, which uses a numerical optimisation routine to maximise
the log-likelihood. Optimisation was done on transformed parameters to ensure that the
estimated variances were all non-negative and that the estimated values of ρ and φ

were between zero and 1. Specifically, the log-likelihood was maximised with respect to
log σ 2

ε , log σ 2
z , log σ 2

τ , log σ 2
δ , arctanhρ and arctanhφ, where arctanh is the inverse hyper-

bolic tangent: arctanh(x) = log
[
(1 + x) / (1 − x)

]
. Most numerical optimisation routines

require an initial guess at the position of the optimum, and in ‘difficult’ problems the
results can be sensitive to this choice, so it is helpful to select good starting values. Here,
initial values for most of the parameters were obtained by fitting simpler models to obtain
a rough idea of what kinds of values could be expected. The exception is the parameter
ρ, which controls the persistence of departures from the average seasonal cycle. It can be
shown (Harvey, 1989, page 57) that the autocorrelation function of the (vt ) component
of our model is

Corr(vt , vt−k) = ρk cos 2πωk.

At a lag of one year, therefore, the autocorrelation is ρ365 cos (2π × 365/365.25), which
is equal to ρ365 for all practical purposes. Since any departures from the average seasonal
cycle will be of little interest unless they last for several months (otherwise they would
belong in the ‘irregular’ component of the decomposition), we consider that (vt ) should
exhibit substantial correlation at a 1-year lag. To obtain a 1-year autocorrelation of 0.5,
for example, we would need to set ρ365 = 0.5 so that ρ = 0.51/365 = 0.998. This suggests
that ρ should be very close to 1, and therefore we set a high starting value of 0.999 in
the optimisation routine.

Table 5.3 Parameter estimates for the state space model fitted to the daily ozone
concentration series.

Parameter σ 2
ε σ 2

z σ 2
τ σ 2

δ ρ φ

Estimate 23.4 3.3 × 10−8 0.659 41.6 0.982 0.572

The parameter estimates are shown in Table 5.3. Approximate standard errors for
the transformed parameters (not shown) suggest that the estimates are fairly precise. The
very small value of σ 2

z may seem surprising. However, recall that this corresponds to the
variance of innovations in the process (βt ) of (5.55); this process must vary slowly if it
is to maintain the desired interpretation as a contribution to the trend component of the
series. It may be helpful to consider the evolution of (βt ) over a period of a year: since
it is modelled as a random walk, we have (see Section 5.2)

βt+365 − βt =
365∑
j=1

zt ,

so that the variance of annual changes in (βt ) is 365σ 2
z . From Table 5.3, this is

estimated as 365 × 3.3 × 10−8 = 1.2 × 10−5. The distribution of βt+365 − βt is therefore
approximately normal with mean zero and variance 1.2 × 10−5 = 0.0032; annual
changes in the underlying slope are therefore likely to be within the range ±2 × 0.003 =
(−0.006, 0.006). Although these values are still small, they are large enough to allow
the slope to change gradually over time and hence to produce a smooth trend that adapts
to changes in the data.
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Table 5.3 also shows that the observation error variance σ 2
ε and the innovation variance

σ 2
δ for the irregular component are both estimated to be quite large. In particular, the

estimate of σ 2
ε suggests that the daily ozone series contains a substantial component of

variation that is independent from day to day; this may be attributed, at least in part,
to measurement error. In fact, this can be seen in the variogram for deseasonalised data
in Figure 2.4(b): a smooth curve drawn through the variogram and extrapolated back
to lag zero would not yield a value of zero as might be expected. In geostatistics, this
phenomenon is known as the nugget effect and is attributed both to measurement error and
to fine-scale variation in the process under study (Webster and Oliver, 2001, Section 6.1).
In the present context, the deseasonalised (and detrended) series can also be regarded as
a contaminated AR(1) process: using the method illustrated in Section 5.5.2, it can be
shown that this is stochastically equivalent to an ARMA(1,1) so that the autocorrelation
function shows a step down to lag 1 and exponential decay thereafter (see Section 5.1.3).
Since the variogram is a scaled mirror-image of the ACF, the step down in the ACF
corresponds to the nugget effect in the variogram.

Figure 5.9 shows some diagnostics for the fitted model. Panel (a) is a time series
plot of standardised residuals, which should behave as a white noise sequence with unit
variance. There is no evidence of trend or seasonality here although there are some large
outliers, both positive and negative. Panel (b) shows the variogram of these standardised
residuals, which is essentially flat: there is no evidence of any temporal dependence
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Figure 5.9 Diagnostics for state space model fitted to daily ozone series: (a) time
series of standardised residuals, (b) variogram of standardised residuals, (c) normal
quantile–quantile plot of standardised residuals, (d) boxplots of standardised residuals
by month.
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here. Panel (c) is a normal quantile–quantile plot, which shows that the tails of the
residual distribution are far from Gaussian. This is connected with the outliers already
noted; it should not affect the results of the estimation too much, although we should
be aware that prediction intervals computed under the assumption of Gaussianity may be
inaccurate (see Section 3.1.1). Finally, panel (d) is a boxplot of standardised residuals
by month; this shows that although there is little seasonal structure in the main body of
the residual distribution, the outliers occur mainly during the months of June, July and
August. These may be associated with specific weather conditions affecting atmospheric
ozone concentrations; to improve the model, therefore, a natural strategy would be to
incorporate relevant covariate information such as daily temperatures. Nonetheless, the
model seems to account well for the trend and for the seasonality in the main body of
the data, so a decomposition based on this model will provide useful information.

The decomposition is shown in Figure 5.10. Here, the estimated trend component at
each time point is μ̂t = (1 0 0 0 0 0 0) α̂t |T and the variance of the associated estimation
error is

(1 0 0 0 0 0 0)P t |T (1 0 0 0 0 0 0)′ .

This can be used to construct an approximate 95 % confidence interval for μt ; the grey
band in the second panel of Figure 5.10 shows the evolution of these confidence intervals
through time. The smoothed values (α̂t |T ) and P t |T were obtained using the dlmSmooth

routine in R. A similar approach is used to extract the estimated seasonal component
ût + v̂t and associated confidence intervals. Finally, the plotted irregular component is

yt − μ̂t − ût − v̂t .
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Note that this includes contributions from both the irregular component of the state vector
(ηt ) and the observation error (εt ).

Figure 5.10 shows that the estimated trend is very smooth, rising to a maximum
value in 1999 and decreasing since then in a roughly linear fashion. The estimate of the
trend slope on 31 December 2008 is −0.542 ppbv per year, with an associated standard
error of 1.67.7 This suggests that underlying ozone concentrations should continue to
decrease in the short term, although the standard error suggests that there is considerable
uncertainty in any such projection. In the long run, of course, the nonstationary nature
of the model means that it is effectively impossible to make meaningful predictions.
However, the estimated trend in Figure 5.10 provides a useful summary of overall change
over the 20-year record. The estimated seasonal component shows that departures from
the average seasonal cycle tend to be short-lived. It would be interesting to see whether
any of these departures can be related to known weather events that may have influenced
the ozone concentrations; this in turn may suggest ways in which the model itself could
be improved. Notice that where there are long periods of consecutive missing values (e.g.
in the early 1990s), the estimated seasonal cycle reverts to a cosine function – this is the
deterministic (ut ) contribution to the seasonal cycle, the stationary (vt ) contribution being
estimated as zero in the absence of neighbouring data values.

Finally, the irregular component in Figure 5.10 shows some interesting structure with
respect to short-lived extreme ozone events. There are several of these during the 20-year
period, indicated by peaks in the irregular component. However, the magnitude of these
events seems to have decreased steadily over time. To assess this formally, one could use
extreme value methods (see Section 6.4). �

The equivalence between these state space models and nonparametric smoothing
techniques also sheds some light on forecasting future values with nonparametric meth-
ods: since the state space models are difference–stationary, forecast error variances will
increase without bound as the lead time increases. This is perhaps unsurprising, since
nonparametric methods are designed to make minimal assumptions about the nature of
the trend and hence cannot be expected to deliver precise predictions far beyond the range
of the data. However, the state space viewpoint provides additional insight into precisely
what can and cannot be achieved by extrapolating nonparametric trend estimates. We
have also seen that the distinction between ‘deterministic’ and ‘stochastic’ trends is not
as clear as it initially appeared: the nonparametric estimation techniques of Chapter 4
were motivated by the idea of a deterministic trend, but we have seen that they can
also be regarded as a means of estimating an unobserved realisation of an underlying
stochastic process.

5.6 Nonlinear models

In the models discussed so far in this chapter, observations {Yt } are considered to depend
linearly on previously occurring quantities. This may account adequately for the residual
dependence in a regression model, which typically is not of primary interest. However, in
other situations a better characterisation of potentially nonlinear dependence structure can

7 The slope βt in (5.55) represents a change per day; this has been multiplied by 365 to obtain
an annual value.
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lead to improved understanding of the system under investigation. One possibility is to use
nonparametric techniques to estimate the dependence structure in a general autoregressive
model of the form

Yt = f (Yt−1, . . . , Yt−d) + δt , (5.57)

where the function f is estimated nonparametrically; essentially this is the autoregressive
equivalent of a nonparametric regression model (see Härdle, Lütkepohl and Chen, 1997,
for a review of the relevant theory). As in the regression setting, nonparametric estimation
of such a general model can be difficult if the dimension d is large (see Section 4.2);
hence it is often useful to simplify (5.57), for example by assuming that the autoregression
function is additive so that the model can be written as

Yt =
d∑

j=1

fj

(
Yt−j

) + δt (5.58)

for smooth functions f1(·), . . . , fd(·). In an environmental application of this type of
model, Stenseth et al. (1997) analysed annual indices of Canadian lynx and snowshoe
hare populations and, for each species, used the estimated functions {fj (·)} to suggest
ecological mechanisms governing the population dynamics.

Just as (5.58) can be considered as the autoregressive equivalent of an additive model,
so the functional-coefficient autoregressive (FCAR) models of Chen and Tsay (1993) can
be regarded as equivalent to varying coefficient models (Section 4.3.3). In an FCAR
model, dependence on lagged values is modelled linearly as in a standard autoregression,
but with autoregressive coefficients that are smooth functions of covariates. By allowing
the autoregressive coefficients to depend on the time index, for example, it is possible to
model gradual changes in the autocorrelation structure of a time series. There have been
few, if any, applications of such models in the environmental sciences to date, however.

An alternative way of simplifying (5.57) is to approximate f with a piecewise linear
function. For example, if d = 1 we might write

f (Yt−1) =
{

c1 + φ1Yt−1 if Yt−1 < τ,

c2 + φ2Yt−1 if Yt−1 ≥ τ,

for some threshold τ . This is an example of a self-exciting threshold autoregressive
(SETAR) model: at any time, the process is in one of a number (here, two) of possi-
ble ‘regimes’ that are themselves determined by past values of the process. Variants on
this exist, for example to ensure that f (Yt−1) is a continuous function of Yt−1. Environ-
mental applications are limited, although the ideas have been applied by Stenseth et al.
(1998a; 1998b) in ecological contexts and by Al-Awadhi and Jolliffe (1998) for the mod-
elling of atmospheric pressure data. For further variants, and other nonlinear models for
the function f in (5.57), see Chapter 3 of Tong (1990).

Another form of nonlinearity arises when the conditional variance of Yt , given pre-
vious information, is not constant. The GARCH models described in Section 3.3 are
designed to deal with this, in cases where changes in the variance cannot be linked
directly either to external covariates or to changes in the mean. Alternatively, if the distri-
bution of the data is such that the variance is related to the mean, analogues of generalised
linear models may be used. Indeed, the inclusion of previous observations (possibly after
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transformation) as additional covariates in a GLM is a natural extension to the linear
autoregressive model family. The resulting models are referred to by Fahrmeir and Tutz
(2001, Section 6.2) as generalised autoregressive models . They also provide an escape
from the assumption of Gaussianity: as discussed in Section 5.1.6, this assumption is not
critical to the estimation of parameters in standard time series models, but it can affect
model selection based on criteria such as the AIC that are calculated from the Gaussian
likelihood used by most modern software packages. Moreover, prediction intervals cal-
culated according to (5.20) may be seriously inaccurate in highly non-Gaussian settings.

Unfortunately, little is known at present about the properties of generalised
autoregressive models except in a few special cases. For example, the conditions
under which realisations from these models remain finite with probability 1 (which are
analagous to the conditions for stationarity of standard time series models – compare
the stationary and nonstationary simulations in Figure 5.5) have not been studied in
general. Few alternatives are available, however. One exception, applicable to time series
of counts, is the class of integer-valued autoregressive (INAR) processes, introduced
independently by McKenzie (1985) and by Al-Osh and Alzaid (1987). A key challenge
in modelling counts is to ensure that realisations of the models will themselves be
integer-valued: it should be clear that standard autoregressive models cannot achieve
this because, in general, quantities such as φ1Yt−1 will not be integer-valued. The INAR
model class circumvents this using a binomial thinning operation: for example, the
INAR(1) model can be written as

Yt = Xt−1 + δt ,

where Xt−1 ∼ Binomial(Yt−1, φ) for some φ ∈ [0, 1) and (δt ) is a sequence of
independent, non-negative, integer-valued random variables. The properties of INAR
models are given by Alzaid and Al-Osh (1990). As with the threshold models described
above, environmental applications have so far been limited although the models have
been applied in hydrological contexts by Thyregod et al. (1999) and by Pavlopoulos
and Karlis (2008). The latter authors give a good review of the area. A promising
alternative to INAR modelling is given by Cui and Lund (2010): the class of models
introduced by these authors has some appealing features, such as the ability to represent
long-memory structure in integer-valued time series, and has been applied to the study
of precipitation occurrence.

Nonlinear and non-Gaussian versions of structural models, along with the
corresponding extensions to the Kalman filter, are reasonably well developed, and are
implemented in the sspir library in R (Dethlefsen and Lundbye-Christensen, 2006).
In most cases, non-Bayesian solutions to the filtering and smoothing problem are
approximate; see Fahrmeir and Tutz (2001, Chapter 8) and Durbin and Koopman (2001,
Chapters 10 and 11), for example. The work of Naveau, Genton and Shen (2005) is an
interesting exception to this general rule: these authors propose an exact extension to the
Kalman filter that is designed to handle data from skewed distributions. In most cases,
however, exact treatments are most easily accomplished within a Bayesian framework
using Markov chain Monte Carlo methods. Nonlinear state space models are widely used
in ecology: for clear and comprehensive introductions to the ideas involved, see Buckland
et al. (2007, 2004), Newman et al. (2006), Thomas et al. (2005). Meyer and Millar
(1999) and Brooks, King and Morgan (2004) present examples of nonlinear state space
modelling using WinBUGS, including the code required to reproduce their analyses.
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Tomassini, L., Reichert, P., Künsch, H. R., Buser, C., Knutti, R. and Borsuk, M. E. (2009) A smooth-
ing algorithm for estimating stochastic, continuous-time model parameters and its application to
a simple climate model. Journal of the Royal Statistical Society, Series C , 58, 679–704.

Tong, H. (1990) Non-linear Time Series: A Dynamical System Approach . Oxford University Press,
Oxford.

Toth, E., Brath, A. and Montanari, A. (2000) Comparison of short-term rainfall prediction models
for real-time flood forecasting. Journal of Hydrology , 132–147.

Tsai, H. and Chan, K. (2005) Maximum likelihood estimation of linear continuous time long memory
processes with discrete time data. Journal of the Royal Statistical Society, Series B , 67, 703–716.

van der Wal, J. and Janssen, L. (2000) Analysis of spatial and temporal variations of PM10 concen-
trations in the Netherlands using Kalman filtering. Atmospheric Environment , 34, 3675–3687.

Washington, R., Hodson, A., Isaksson, E. and MacDonald, O. (2000) Northern hemisphere telecon-
nection indices and the mass balance of Svalbard glaciers. International Journal of Climatology ,
20, 473–487.

Webster, R. and Oliver, M. A. (2001) Geostatistics for Environmental Scientists . John Wiley & Sons,
Ltd, Chichester.

Young, P. C. (1998) Data-based mechanistic modelling of environmental, ecological, economic and
engineering systems. Environmental Modelling and Software, 13, 105–122.

Young, P. C., Lane, K., Ng, C. N. and Palmer, D. (1991) Recursive forecasting, smoothing and
seasonal adjustment of nonstationary environmental data. Journal of Forecasting , 10, 57–89.

Yule, G. U. (1927) On a method of investigating periodicities in disturbed series with special reference
to Wolfer’s sunspot numbers. Philosophical Transactions of the Royal Society, London , A226,
267–298.

Zuur, A. F. and Pierce, G. J. (2004) Common trends in northeast Atlantic squid time series. Journal
of Sea Research , 52, 57–72.

Zuur, A. F., Tuck, I. D. and Bailey, N. (2003) Dynamic factor analysis to estimate common trends
in fisheries time series. Canadian Journal of Fishing and Aquatic Science, 60, 542–552.



6

Other issues

In this final chapter of Part I we briefly review some other, more specialised, statistical
techniques that may be useful for trend analyses in specific applications.

6.1 Multisite data

With the exception of the state space models of Section 5.5, the techniques discussed
so far have mostly been designed for the analysis of a single series. In many applica-
tions, however, multiple series are routinely available, either as measurements on several
variables (multivariate data) or as records from multiple spatial locations (multisite, or
spatiotemporal, data), as with the Dutch wind speed data of Section 1.3.1. In this section
we discuss multisite data; multivariate methods are considered later.

The simplest approach to a multisite analysis is to deal with each site separately,
ignoring the information from all of the other sites. However, this does not make full use
of the available information. It may be, for example, that none of the sites individually
shows a statistically significant trend over the period of record but that the estimated
trends from all sites are broadly similar. In this case, one might suspect that there is
a genuine signal in the data, and the combined evidence for a trend is stronger than
that from an individual site (it is also possible, of course, that neighbouring sites show
similar trends simply because of correlation between them; this issue is discussed below).
Multisite data therefore provide the opportunity of making more precise statements about
series structure at individual locations. This is sometimes referred to in the literature
as ‘borrowing strength’, because the analysis for an individual site is strengthened by
including information from its neighbours, or as ‘space-for-time’, because the use of
information from other sites can be regarded as a way of increasing the sample size,
which would normally be possible only by collecting longer series. Furthermore, multisite
data provide the opportunity to characterise the spatial variation of different aspects of
time series structure; this can provide useful insights into the underlying mechanisms.

In some situations it may be appropriate to combine the various series, for example
by averaging them, and then to analyse the combined series. However, this approach has
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its drawbacks if the substantive question of interest relates to individual spatial locations
rather than to spatially aggregated summary measures. One such drawback is the implicit
assumption that the individual series all have essentially the same structure (i.e. that there
is no systematic variation over space): if this is not the case, then a single combined series
may not be representative of any individual location. A further difficulty is that periods of
record usually vary between sites: in this case, any combined series will contain artificial
inhomogeneities caused by the different numbers of observations contributing at each
time point. In general, then, it is necessary to extend our existing analysis techniques to
handle multisite data.

In Section 3.4.3 it was noted that observational records may contain discontinuities
due to changes in measurement practice or monitoring equipment. When dealing with
multisite data, in addition the method of data collection may vary between sites: for
example, there may be different types of measuring instruments, different calibration
procedures or variation in observer practice. Such features can give rise to apparent
spatial inconsistencies or inhomogeneities, with data from neighbouring sites showing
less agreement than might be expected. This potentially complicates the analysis, with
a risk of overinterpreting apparent spatial structure unless artefacts of the measurement
process are acknowledged. Prior to any detailed analysis, therefore, it is worth taking
care to understand the data-collection mechanism (including aspects that may not be
documented) and its likely consequences. This is generally true, of course, but the potential
for unwittingly producing sophisticated nonsense is perhaps greater when dealing with
multisite data than in many other contexts.

6.1.1 Visualisation

At the exploratory stage of a multisite analysis, in addition to the techniques discussed
in Chapter 2 it is useful to visualise the spatial structure of the data. One way to do this
is to produce maps showing the spatial variation of summary statistics for each location.
Statistics of interest may include the mean, variance, lag 1 autocorrelation coefficient
and linear trend slope. For series at sub-annual timescales, it may be worth producing
separate maps for each month of the year, or for each season. Care should be taken,
however, to ensure that the periods of record from which such maps are constructed
are at least broadly comparable: otherwise, apparent spatial structure may emerge as an
artefact of differences in record lengths. If, for example, there is an increasing trend in a
particular region and records from the eastern sites tended to start later than those from
those in the west, a map of series means would give a potentially false impression of an
east–west gradient.

One of the most appealing and readily interpretable methods for displaying spatial
structure is the contour map: such maps can be produced easily in many software packages,
for example using the contour command in R. However, note that contouring algorithms
by definition produce a smooth representation of spatial variation: the effect of this may be
to obscure important local features. Bearing in mind that one of the aims of an exploratory
analysis is to obtain a preliminary understanding of the data structure (Section 2.1), it
is worth considering alternative techniques that are as faithful to the data as possible.
Grey-scale or colour images, with an appropriately chosen colour scale, can be extremely
useful mapping tools if the sites under consideration form a regular grid; contours can
be overlaid on such images to aid interpretation of the colour scale. Situations involving
regularly gridded data tend to be fairly specialised, however. When sites are distributed
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irregularly in space, an alternative way of displaying spatial structure is using a ‘bubble
map’ in which, at each site, a circle is drawn such that the size of the circle reflects the
value of the quantity of interest. A variation on this is to use circles of different colours,
rather than different sizes.

Example 6.1
Figure 6.1(a) is a bubble map of decadal trends in annual mean wind speed at each of
the Dutch weather stations in Figure 1.1, for the period 1961–2000. At each station,
annual values have been calculated in the same way as for the two stations considered
in Section 2.1.1, discarding any year with fewer than 335 days’ valid data. At IJmuiden,
three annual values have been discarded; at Hoek van Holland, two values; at three further
sites, one value; and the annual series from the remaining eight sites are complete. The
small number of discarded values ensures that trend estimates from the different stations
are broadly comparable. The quantities mapped in Figure 6.1(a) are the slopes of linear
trend models fitted to the data from each site using least squares, with time measured in
decades. Note that this analysis is purely exploratory: there are no diagnostics to determine
the adequacy of the linear trend model and no attempt to determine whether any of the
trends are significantly different from zero. However, the linear trend slope provides a
simple and interpretable summary of overall change during the period of interest and,
by mapping the slopes in this way, we can obtain preliminary insights into the spatial
variation of changes in the wind speed regime.
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Figure 6.1 Trends (ms−1 / decade) in annual mean wind speeds, 1961–2000 (a) for data
from the 13 Dutch weather stations shown in Figure 1.1, (b) for gridded reanalysis data
for northwestern Europe. Positive values are denoted by solid circles (contours); negative
values by dashed circles (contours). Circle sizes in (a) are indicative only.

Figure 6.1(a) suggests that there have been increases in wind speed at some sites
(represented by solid circles) and decreases at others. The largest increase is 0.27 m s−1

per decade and the largest decrease is −0.13 m s−1 per decade. A possible interpretation
of these mixed results is that, overall, there has been no change in wind speed over
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the Netherlands and that the differences between stations merely reflect random variation
about zero. However, the locations of positive and negative values suggest some spatial
organisation: with the exception of Beek (the most southerly station), there seems to be a
tendency towards positive trends at ‘coastal’ stations and negative trends at ‘inland’ ones.
A possible explanation for the anomalous behaviour at Beek is its increased exposure
due to its altitude: it is 126 m above sea level, whereas with one exception the other
stations are all below 20 m. Obviously, a formal analysis would be required to confirm
the apparent spatial structure, but nonetheless the example illustrates the use of simple
visualisation techniques to reveal potentially interesting structures in multisite data.

To explore further the apparent spatial structure in Figure 6.1(a), Figure 6.1(b) shows
the corresponding trends for a large region of northwestern Europe. The data used here
were derived from the NCEP-NCAR reanalysis data set (Kalnay et al., 1996), which
provides estimates of many climate variables on a regular grid. More details can be
found in Yan et al. (2002); indeed, Figure 6.1(b) is identical to Figure 1(b) in that paper,
except for the use of a slightly different 40-year period in the analysis. The regular
grid provides the opportunity to visualise spatial variation using a grey-scale image with
overlaid contours. Interestingly, the map shows a transition from negative trends of around
−0.2 m s−1 per decade in continental Europe, to positive trends up to 0.3 m s−1 per decade
in the northwest of the region, with a well-defined transition zone along the North Sea
coast. Qualitatively, this agrees well with the apparent spatial organisation in Figure 6.1(a).
To put these trends in context, the mean wind speed in Europe ranges from around 7 m s−1

on the continent to over 12 m s−1 in the northeast Atlantic Ocean. Over the course of half
a century, therefore, a sustained change of 0.2 m s−1 per decade represents a substantial
percentage change in mean wind speed. This could have significant implications for, for
example, the risk of storm damage to buildings and oil rigs, and for the power output of
wind farms. For more details of this data set and a formal analysis based on generalised
linear models (Section 3.5), see Yan et al. (2002). �

Arguably, maps such as those in Figure 6.1 suffer from the disadvantage that they do
not show whether the trends are statistically significant. One possible way to overcome
this is to use different line thicknesses or additional shading to indicate the areas where
trends are ‘formally’ significant; another is to produce a map of p-values corresponding
to tests of the null hypothesis that the underlying trend slope is zero. In general, however,
such techniques are problematic for several reasons. An obvious one is that test results
cannot be considered as reliable without carrying out appropriate diagnostics at each site
to verify the underlying assumptions. Another is that such procedures lead to a partition
of any spatial region on the basis of acceptance or rejection of the null hypothesis, and
this may not be the most helpful way to think about the problem. Figure 6.1(b) illustrates
the issue well: if the usual least squares assumptions hold, formal tests could be carried
out to demonstrate that the largest (in absolute value) trends are significantly different
from zero but that the smaller trends, such as those in the transition zone along the North
Sea coast, are not. However, it would be wrong to conclude from this that ‘there is no
evidence for any trend’ in the transition zone: it is clear that there are genuine changes in
the wind speed regime and that the underlying trends vary smoothly in space, so that there
are very few locations where they are exactly zero. A more constructive formal analysis,
here and in many other environmental applications involving multisite data, would aim
to characterise the spatial variation in trends using a spatial–temporal model. We now
discuss some possible methods for achieving this.
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6.1.2 Modelling

The spatial dimension of multisite data presents the modeller with two distinct challenges:
first the need to account for systematic intersite differences and second the fact that data
from neighbouring sites generally cannot be considered as independent. One natural frame-
work for handling systematic differences between sites is to use regression techniques. To
illustrate, suppose that a linear trend model is considered to be appropriate at each site:

Yst = β0s + β1s t + εst = μst + εst , say, (6.1)

where now Yst denotes the response of interest at site s and time t and a subscript s has
been added to the regression coefficients β0 and β1 to allow for the possibility that they
vary between sites. In many cases, as in Figure 6.1(b), exploratory analysis suggests that
the coefficients vary smoothly in space or that they depend on other spatially varying
covariates such as altitude. It may therefore be plausible to represent them using a model
such as

βjs = βj + fj

(
Longs , Lats

)
(j = 0, 1), (6.2)

where f0(·, ·) and f1(·, ·) are smooth functions centred on zero and Longs , Lats are
respectively the longitude and latitude of site s. The term βj in (6.2) can be interpreted as
an overall ‘regional’ value of the corresponding coefficient. Substituting (6.2) into (6.1),
we obtain

Yst = β0 + f0
(
Longs , Lats

) + β1t + f1
(
Longs , Lats

)
t + εst .

The first three terms on the right-hand side here are a constant β0, a spatial component
f0

(
Longs , Lats

)
, representing the expected variation of the response at time t = 0, and

a trend component β1t . The fourth term is effectively an interaction (see Section 3.2.2)
between the spatial covariates and the time index, and represents the spatial variation
in trend slopes. This kind of approach can be applied to any regression based models,
including GLMs.

In general, it may be difficult to specify a parametric form for functions such as
f0(·, ·) and f1(·, ·) in (6.2) so that nonparametric methods are required. One possibility is
to use smoothing techniques such as those described in Chapter 4 – in this case we have
a varying coefficient model (see Section 4.3.3). An alternative is to try and approximate
the {fj (·, ·)} using simpler, appropriately chosen, parametric functions as building blocks;
see Chandler (2005) for details. This makes the fitting of relatively complicated models
feasible, although potentially at the expense of some lack of detail in the representation
of regional variation.

Intersite differences do not always exhibit the degree of spatial organisation shown
in Figure 6.1(b). In this case it is not appropriate to consider smooth representations of
the coefficients in models such as (6.1), and it may be more plausible to consider them
as realised values of random variables:

βs =
(

β0s

β1s

)
∼ MVN

(
μβ,�β

)
, say, (6.3)

where now μβ is the overall ‘regional’ value of the coefficients (corresponding to (β0 β1)
′

in the smoothly varying model (6.2)) and the covariance matrix �β reflects the magnitudes
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of differences between coefficient vectors of the individual sites and this regional value. In
conjunction with (6.1), (6.3) defines a random effects model and the {βs} are referred to as
random effects . In the simplest case, the random effects at different sites may be considered
as independent, leading to a complete lack of spatial structure: in fact, this is one possible
way of accounting for potential differences between measurement processes at different
sites (see the discussion at the beginning of Section 6.1.1). More generally, one might
consider that the effects from neighbouring sites are likely to be correlated: this can be
accommodated using Gaussian process models . These require the specification of a spatial
correlation structure for the random effects, in which the correlations depend on intersite
distances, (see Pinheiro and Bates, 2000, or Diggle and Ribeiro, 2007, for example).
Indeed, some spatial correlation structures lead to smoothly varying effects, so that this
class of model can be regarded as an alternative means of representing smooth spatial
structure nonparametrically. Finally, there is the possibility that some of the regression
coefficients in models such as (6.1) vary systematically in space whereas others are less
structured: in this case it may be appropriate to model the unstructured coefficients using
random effects and to retain a fixed effects representation such as (6.2) for the remainder.
This leads to the class of mixed effects models .

The modelling strategies outlined above are designed to address the issue of system-
atic (but possibly unstructured) intersite differences, corresponding to spatial variation in
{μst } in the context of model (6.1). They do not, however, address the issue of intersite
dependence, which relates to the error component {εst }. A fully spatiotemporal model
would represent the spatial correlation structure of this error component, perhaps via
a stationary zero-mean Gaussian process. In conjunction with a spatial or spatiotempo-
ral random effects model for {μst }, such a model has a hierarchical structure with two
‘levels’ of randomness, sometimes referred to as the data level (reflecting the variation of
the individual observations about their expected values) and the population level (reflect-
ing the spatial variation of the expected values themselves). Hierarchical models are being
used increasingly for the analysis of space–time data: see Wikle, Berliner and Cressie
(1998), Banerjee, Carline and Gelfand (2004, Chapter 8) and Cressie and Wikle (2011),
for example.

Although random effects, mixed effects and hierarchical models are conceptually
appealing, in many cases model fitting and inference is far from trivial. For example, max-
imum likelihood estimates of variance parameters such as �β in (6.3) can be severely
biased; a modification of the usual likelihood criterion to obtain restricted maximum
likelihood (REML) estimates of variance parameters is often advocated as a means of
overcoming this, although the comparison of models involving different fixed and random
effects is somewhat complicated (see Snijders and Bosker, 1999, Section 4.6 for an intro-
duction to the concepts involved and Searle, Casella and McCulloch, 1992, Chapter 6
for a thorough account). In R, the lme() and nlme() commands in the nlme library
(Pinheiro et al., 2008) allow ML and REML fitting of such models. Another difficulty,
however, is that maximising the (restricted) likelihood can be a formidable computational
task except in relatively simple cases. This perhaps explains why currently there is consid-
erable interest in the use of Bayesian methods, and the associated elegant computational
machinery (see Gelman et al., 1995, for example), to fit such models. For an application
of these ideas to a problem involving environmental trend analysis, see Chapter 10 in the
present volume.

In view of the complexity and computational challenges of hierarchical models, it is
worth exploring alternative methods for dealing with intersite dependence that may be
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suitable for routine use. In the context of multisite data, perhaps the simplest approach
is to fit models simultaneously to the data from all sites by maximising a log-likelihood
function computed as though the sites were independent, and then to adjust standard errors
and likelihood ratios for the dependence. It may be shown (Chandler et al., 2007) that
this procedure is justified so long as the fitted models contain an adequate representation
of temporal dependence and that the adjustments to standard errors can be computed
relatively easily (see Chandler, 2005, for details of the computations in the case of GLMs
and Chandler et al., 2007, for the general case). Adjustments to likelihood ratios for
comparing nested models are slightly more difficult to compute; for recent developments
see Chandler and Bate (2007) and references therein. An example of the application of
these ideas in the context of environmental trend analysis can be found in Chapter 8 of
the present volume.

In Section 3.3 we saw that generalised least squares (GLS) provides a means of
accounting for temporal dependence in time series regression models and in Section 3.5
the extension to generalized estimating equations (GEEs) for GLMs was discussed. It
is natural, then, to ask whether GLS and GEEs can be used to account for spatial as
well as temporal dependence, and thereby improve on the techniques discussed in the
previous paragraph. In principle this can be done; indeed, the pioneering work of Haslett
and Raftery (1989) can be regarded as an application of this kind of idea to the modelling
of multisite long-memory time series. However, subtle pitfalls await the uninitiated: in
certain situations, as demonstrated by Sullivan Pepe and Anderson (1994), the use of
such techniques can yield biased estimates of parameters of interest. This is particularly
true in complex situations where the fitted models cannot capture fully the structure of
a system, as is often the case in environmental applications. Thus the simpler approach,
of fitting models as though sites are independent and then adjusting standard errors, may
sometimes be preferred. A general lesson from this is that when dealing with complex
data structures it is necessary to understand clearly the implications both of the model
being fitted and the methodology for fitting it.

6.2 Multivariate series

Multivariate series arise when several variables are observed simultaneously at each time
instant. If the variables are mutually independent, they can be analysed individually, but
more often there are intervariable dependencies that are of interest to the analyst. In some
settings, the nature of the dependence may suggest plausible strategies for modelling it.
For example, in the multisite case considered above it is natural to consider the use of
spatial correlation functions. More generally, however, the structure of the dependence
is less clear and other techniques must be considered. Accessible introductions to ‘clas-
sical’ multivariate methods can be found in Manly (1994) and Everitt and Dunn (2001);
Krzanowski (1988) gives a more detailed treatment.

6.2.1 Dimension reduction

By far the most common approach to multivariate problems is to start with some form of
dimension reduction, of which principal components analysis (PCA – sometimes referred
to as empirical orthogonal function , or EOF, analysis) is the best known. The idea behind
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PCA is to transform a vector Y = (Y1 . . . Yk)
′ of random variables into another vector

Y∗ = (
Y ∗

1 . . . Y ∗
k

)′
of principal components , via a linear transformation:

Y ∗
1 = a11Y1 + a12Y2 + · · · + a1kYk

Y ∗
2 = a21Y1 + a22Y2 + · · · + a2kYk

...
...

Y ∗
k = ak1Y1 + ak2Y2 + · · · + akkYk

or, in matrix form,
Y∗ = AY,

where A is a k × k matrix with (i, j)th element aij , chosen in such a way that:

• Var
(
Y ∗

1

) ≥ Var
(
Y ∗

2

) ≥ · · · ≥ Var
(
Y ∗

k

)
. This is intended to ensure that the first com-

ponent Y ∗
1 in some sense contains the most information about variation within the

system as a whole, followed by the second component and so on.

• Y ∗
1 , . . . , Y ∗

k are mutually uncorrelated random variables. This can be regarded as a
means of avoiding the duplication of information between components.

• A′A = I k , the k × k identity matrix. Without such a constraint, the variances of the
components could be made arbitrarily large simply by scaling the elements of A.

It can be shown (Krzanowski, 1988, Section 2.2.4) that these criteria define a unique
matrix A, that the rows of this matrix are the eigenvectors of the covariance matrix of Y,
and that the variances of the principal components are the corresponding eigenvalues.

In carrying out a PCA, the hope is firstly that most of the important variation is
captured in a relatively small number of components (thereby achieving the goal of
dimension reduction) and secondly that the loadings {aij } are such that the components
have a plausible subject-matter interpretation. For example, if Y1 and Y2 represent respec-
tively the population sizes of predator and prey species in a particular area and a PCA
yields components

Y ∗
1 = Y1/

√
2 + Y2/

√
2,

Y ∗
2 = Y2/

√
2 − Y1/

√
2,

then Y ∗
1 may be interpreted as an index of overall population abundance and Y ∗

2 as a
measure of the excess of prey over predators (which may be interpreted as an index of
the predators’ food supply). The scaling by

√
2 here ensures that the loadings satisfy the

constraint A′A = I 2.
In practice, of course, given only data y1, . . . , yT (each considered to be drawn from

the distribution of Y), the underlying covariance matrix is usually unknown and the princi-
pal components reported by software packages are the eigenvectors of the sample version

1

T − 1

T∑
t=1

(yt − y) (yt − y)′ , (6.4)
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where y = T −1 ∑T
t=1 yt is the sample mean of the observations.1 If the data can be

regarded as an independent random sample from the distribution of Y, then (6.4) is just
the usual estimator of the underlying covariance matrix. For stationary multivariate time
series, the same estimator can be used: except for the use of divisor T − 1 instead of
T , the elements of this matrix are the zero-lag cross-covariances between each pair of
series (see Section 2.1.5). In the stationary case, therefore, it may be useful to carry out
a PCA and then, providing the components have a clear subject-matter interpretation, to
compute the time series of the first few components (the value of the rth component at
time t is y∗

rt = ar1y1t + ar2y2t + · · · + arkykt , in an obvious notation) and analyse them
separately using the methods for stationary series described in Chapter 5. Although this
sounds straightforward, some care is required: for example, PCA yields different results
depending on whether or not variables are standardised prior to analysis. For discussion
of the issues involved, see Krzanowski (1988, Section 2.2.5), and Everitt and Dunn
(2001, Chapter 3).

The technique of factor analysis is at some level similar to PCA, in that the aim is to
derive a small number of interpretable new variables. A fundamental difference, however,
is that factor analysis appeals to an underlying statistical model whereas principal com-
ponents are defined implicitly via the criteria given above. For a vector Y = (Y1 . . . Yk)

′

of random variables, the factor analysis model is

Y1 = b11F1 + b12F2 + · · · + b1pFp + ε1

Y2 = b21F1 + b22F2 + · · · + b2pFp + ε2

...
...

Yk = bk1F1 + bk2F2 + · · · + bkpFp + εk,

where now F1, . . . , Fp(p < k) are the values of p unobserved or latent factors and the
{εi} are uncorrelated random variables with zero mean. A factor analysis of data y1, . . . , yt

will therefore produce a sequence of vectors F1, . . . , FT such that Ft = (
F1t . . . Fpt

)′
con-

tains the values of each factor at time t . Although the precise definition of the factors here
looks rather different from that of principal components, and although the precise imple-
mentation of factor analysis requires some skill (Manly, 1994, Section 7.6; Krzanowski,
1988, Section 16.2), operationally they are often interpreted in a very similar way and
there are close connections between them (Everitt and Dunn, 2001, Section 3.3). For cur-
rent purposes, however, the most important connection is that factor analysis, like PCA,
relies implicitly on the sample covariance matrix (6.4) of the data.

Unfortunately, this reliance on the sample covariance matrix means that for nonsta-
tionary multivariate time series, it is generally inappropriate to use either PCA or factor
analysis. The reason is that in the nonstationary case, by definition the {yt } are drawn from
different distributions so that in general they do not share the same covariance matrix;
(6.4) is therefore meaningless as a measure of interseries association. Nonetheless, the idea
of reducing a large number of interdependent series into a smaller number of uncorrelated
ones is appealing, and some of the ideas can be extended to a time series context. For

1 The components are not always calculated in this way, since it is computationally more stable
to derive them from the singular value decomposition (SVD) of the T × k matrix with yt in the t th
row (Krzanowski, 1988, Section 4.1). This is the algorithm used in the prcomp() command in R,
for example.
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example, a natural extension of the factor analysis model is to replace the latent variables
F1, . . . , Fp with latent stochastic processes, which might be interpreted as trends that are
common to some or all of the observed series. This idea leads to the technique of dynamic
factor analysis (Molenaar, 1985; Molenaar, de Gooijer and Schmitz, 1992), which has
strong connections with state space models (Section 5.5; see also Harvey, 1989, Section
8.5). Accessible introductions to the area, and environmental applications, can be found
in Zuur, Tuck and Bailey (2003) and Zuur and Pierce (2004); see also Chapter 9 of the
present volume. Another approach, which stands in a similar relation to dynamic factor
analysis as does PCA to ordinary factor analysis, is the min/max autocorrelation factor
(MAF) approach of Switzer and Green (1984). Here the aim is to transform the original
series into a smaller number of component series, ordered according to the speed of decay
of their sample autocorrelation functions. Since nonstationary processes, and in particular
trends, lead to slowly decaying ACFs (see Sections 2.1.3 and 5.2.1), such a procedure
should lead to information on trends being concentrated in the first few component series.
The idea has been applied in the context of environmental trend analysis by Shapiro and
Switzer (1989) but, perhaps due to a lack of widely available software, appears not to
have been pursued: it would be interesting to explore its potential further.

6.2.2 Multivariate models

In addition to techniques that aim to reduce the dimensionality of multivariate series,
there are methods that seek to model the interseries structure directly. The state space
modelling framework of Section 5.5 is an obvious example of this. In addition, vector
ARMA or VARMA models are multivariate analogues of ARMA models. For example, the
model equation for a zero-mean vector AR(1) is

Yt = φYt−1 + εt , (6.5)

where φ is a k × k matrix and (εt ) is a sequence of uncorrelated zero-mean random
vectors, each with the same covariance matrix. The process (6.5) is stationary only if the
eigenvalues of φ are all less than 1 in absolute value (Brockwell and Davis, 2002, Section
7.4); this is the multivariate extension of the AR(1) stationarity condition discussed in
Section 5.1.1. It might be supposed that the individual series in a VAR(1) process would
themselves have an AR(1) structure. However, the analysis of the predator–prey system
in Example 5.6 shows that this is not the case. This system is a bivariate VAR(1) with
nonzero mean and with

φ =
(

φ1 ψ1

ψ2 φ2

)
;

it was demonstrated earlier that the individual component series in fact behave as
ARMA(2,1) processes. Clearly, therefore, the link between the behaviour of VARMA
processes and their univariate counterparts is not straightforward. Moreover, the
identification of appropriate models for multivariate series (which requires inspection of
the sample cross-correlation functions, as well as the individual ACFs and PACFs) is
rather more difficult than for univariate series. For an introduction to the problems, and
some ways of overcoming them, see Chatfield (2003, Section 12.3).

In situations where the variables of interest depend upon covariates as well as upon
each other, it is natural to consider the development of multivariate regression models
that represent the simultaneous (inter-)dependence structure. In a multivariate regression
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model, the standard multiple regression equation (3.34) is replaced with a system of k

equations, one for each of the response variables considered (note that the covariates
are not necessarily restricted to be the same for each response variable, although this
is of course a possibility). Such a model could in principle be fitted using ordinary
least squares estimation separately for each response variable. However, such a proce-
dure fails to account for potential correlations between the error terms for the different
responses. Simultaneous estimation using generalised least squares (see page 99) over-
comes this problem. It also allows the fitting of models in which constraints are imposed
on the regression coefficients across two or more responses: this would be of interest, for
example, if one wished to fit a model in which all of the responses shared a common
linear trend. Multivariate regression models have been studied extensively in economet-
rics; for good introductory treatments, see, for example, Greene (2003, Chapter 14) and
Davidson and Mackinnon (2004, Chapter 12).

Most of the methods reviewed so far in this section are most appropriate when the
individual series are Gaussian or nearly so. Few models are currently available for multi-
variate time series in non-Gaussian settings; see, however, Fahrmeir and Tutz (2001) for
a general review of methods for non-Gaussian multivariate data. Moreover, few models
are available in settings where different variables have markedly different distributions.
This arises, for example, in the analysis of daily rainfall and temperature series at a
particular location: although in many parts of the world daily temperature distributions
may be approximately Gaussian, rainfall distributions are usually highly skewed. In such
situations, often the only viable method of analysis is to deal with each series in turn, at
each stage conditioning on the series already analysed. The rationale for this is that any
joint distribution can be factorised as a product of conditional distributions:

f (y) = f (y1) f (y2|y1) f (y3|y2, y1) · · · f (yk|yk−1, . . . , y1)

in an obvious notation. In the rainfall–temperature example, therefore, one might start by
modelling the rainfall series, perhaps within the framework of a GLM (see Section 3.5)
to account for covariates that are responsible for trends, and then build a time series
regression model for temperature in which rainfall is considered as a covariate. For an
illustration of this, see Furrer and Katz (2007).

6.3 Point process data

In Section 5.4 we discussed models for irregularly spaced time series where the irregu-
larity is due to the measurement regime. In some situations, however, the process under
investigation itself consists of a sequence of events (for example, earthquakes, tropical
cyclones or sightings of a particular animal species) occurring at irregular time intervals:
this gives rise to point process data .

Broadly speaking, there are two distinct approaches to the analysis of such data: these
focus respectively upon the sequence of intervals between events and upon the rate of
occurrence of the events themselves. The first approach reduces the data to a regularly
spaced sequence of intervals that can be analysed using methods described earlier in this
book – noting, however, that the interval lengths are necessarily non-negative and hence
non-Gaussian. In this section, therefore, we briefly review methods that focus on the rate
of occurrence. Davison (2003, Section 6.5) gives an accessible introduction to the area;
for a more detailed treatment, see Cox and Isham (1980) or Daley and Vere-Jones (2003).
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6.3.1 Poisson processes

The simplest model for point process data is the homogeneous Poisson process , which
can be characterised as follows:

• No two events can occur exactly simultaneously.

• The number of events in any time interval has a Poisson distribution with mean
proportional to the length of the interval: N(t1, t2) ∼ Poi (λ |t2 − t1|), say, where
N(t1, t2) is the number of events in the interval (t1, t2) and λ> 0.

• The numbers of events in nonoverlapping time intervals are independent random
variables.

The parameter λ is known as the rate or intensity of the process, and can be interpreted
as the mean number of events per unit time. If N events are observed over a time period
of length T , then λ can be estimated as N/T .

The homogeneous Poisson process is rarely adequate in itself as a model for environ-
mental data, but it forms the basis for many other point process models. In this respect
it plays much the same role as does white noise in the context of time series models.
Nonetheless, in the initial stages of an analysis it may be useful to determine whether the
observed occurrence times can be regarded as a realisation of a homogeneous Poisson
process. The following properties of the process can be used as the basis of diagnostics
to assess this:

• If the period of record is split into nonoverlapping intervals of equal length, the
numbers of events in each interval are independent and identically distributed Pois-
son random variables. In this case, the sample mean and variance of the event
counts should be roughly equal.

• The intervals between events are independent random variables, each having an
exponential distribution with parameter λ. The independence of successive intervals
can be assessed using the sample autocorrelation function of the interval sequence,
and a check for consistency with the exponential distribution can be made using a
quantile–quantile plot (for example Rice, 2006, Section 10.2).

• Conditional on the total number of events N in an interval (0, T ), the event times
form an independent random sample from the uniform distribution on (0, T ). Again,
this could be checked using a quantile–quantile plot.

In the context of a trend analysis, perhaps the most obvious extension of the
homogeneous Poisson process is to allow the rate to vary over time. Specifically, an
inhomogeneous Poisson process (IPP) differs from the homogeneous version in that the
constant λ is replaced with an intensity function λ(·) and the distribution of N(t1, t2) is
Poisson with mean ∫ t2

t1

λ(t)dt.

In an IPP, the sample variance of counts in disjoint intervals is expected to be higher than
the mean; this is sometimes referred to as overdispersion .

If inhomogeneity is suspected, it will often be of interest to estimate the intensity
function. Perhaps the easiest way to achieve this is to exploit the fact that for an IPP with
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intensity function λ(·), conditional on the total number of events N in an interval (0, T ),
the times of the events form an independent random sample from the distribution with
density f (·) proportional to λ(·) over that interval:

f (x) =
{
λ(x)/

∫ T

0 λ(t)dt, x ∈ (0, T ),

0, otherwise.

The density f (·) can be estimated from the observed event times using well-established
nonparametric procedures, as implemented in the density() command in R, for example.
Denoting by f̂ (t) the resulting density estimate at time t , the corresponding estimate of
the intensity function is just λ̂(t) = Nf̂ (t).

In some settings it may be of interest to model the intensity function of an IPP in a
parametric form, thus opening up the possibility of introducing dependence on covariates.
For example, an IPP analogue of the linear trend model (3.2) has

log λ(t) = β0 + β1t ⇒ λ(t) = exp [β0 + β1t] (6.6)

(note that setting λ(t) = β0 + β1t would lead to problems since λ(t) cannot be negative).
Such models can be fitted using maximum likelihood: it can be shown (Davison, 2003,
Section 6.5.1) that if an IPP is observed over the period (0, T ) to yield events at times
t1, t2, . . . , tN then the log-likelihood for parameters in λ(·) takes the form

−
∫ T

0
λ(t)dt +

N∑
j=1

log λ(tj ). (6.7)

For the ‘loglinear trend’ model (6.6), this reduces to

Nβ0 + β1

N∑
j=1

tj − eβ0
[
eβ1T − 1

]
/β1. (6.8)

This must be maximised numerically, for example using routines nlm() or optim() in
R, to obtain estimates of the parameters β0 and β1.

More generally, if the intensity function of an IPP is considered to depend on
covariates, then to evaluate the contribution − ∫ T

0 λ(t)dt to the log-likelihood (6.7), it is
necessary to know the covariate values throughout the time interval (0, T ). This is usually
impractical: even if high-resolution covariate data are available (at times 0,�t, 2�t, . . . ,
say) the integral must of necessity be approximated by the corresponding sum:

∫ T

0
λ(t)dt ≈ �t

T/�t∑
k=1

λ(k�t).

This approximation will be accurate if the intensity function can be considered as approx-
imately constant within intervals of length �t . In this case, the number of events (Nk , say)
in the kth such interval has approximately a Poisson distribution with mean λ(k�t)�t .
Denote this mean by μk , and notice that any dependence of λ(·) upon the underlying
covariates will be shared by the sequence (μk). This suggests that, instead of working
directly with the IPP log-likelihood (6.7), approximate inference for IPPs can be conducted
by fitting generalised linear or generalised additive models (Sections 3.5 and 4.2) to the
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time series (Nk) of counts, considered as independent Poisson variables with covariate-
dependent means (μk). The following example illustrates the procedure.

Example 6.2
Consider data from the loglinear trend model (6.6), aggregated as described so that Nk

has approximately a Poisson distribution with mean

μk = λ(k�t)�t = exp (β0 + β1k�t) �t.

Taking logarithms, we obtain

log μk = log �t + β0 + β1xk,

where xk = k�t . This shows that the approximation is effectively a Poisson GLM for the
(Nk) with a logarithmic link function (see Section 3.5); it can therefore be fitted using
standard software routines such as glm() in R. Notice, however, that the intercept in
the linear predictor here is not β0, but log �t + β0. To force software routines to report
an estimate of β0, it is necessary to declare log �t as a known component of the linear
predictor; such a component is referred to as an offset (Dobson, 2001, Section 9.2).

It is instructive to demonstrate the connection between the approximating GLM and
the IPP log-likelihood (6.7). Ignoring constant terms, the Poisson log-likelihood for the
approximating GLM is

�(β0, β1) =
T/�t∑
k=1

[
Nk log μk − μk

]

=
T/�t∑
k=1

[
Nk (log �t + β0 + β1k�t) − exp (β0 + β1k�t) �t

]

= N
[
log �t + β0

] + β1

T/�t∑
k=1

Nkk�t − eβ0

T/�t∑
k=1

exp (β1k�t) �t. (6.9)

The term N log �t can be ignored since it does not depend on the parameters. Consider
next what happens to the remaining terms as we increase the accuracy of the approximating
model by letting �t tend to zero. In this case, the values of Nk will eventually become
either one (for intervals containing the original occurrence times) or zero. The intervals
for which Nk = 1 are defined by

{
k : (k − 1)�t ≤ tj < k�t for some j ∈ {1, . . . , N}} .

It follows that as �t → 0, the term β1
∑T/�t

k=1 Nkk�t in (6.9) tends to β1
∑N

j=1 tj . Simul-

taneously, the final term in (6.9) tends to eβ0
∫ T

0 exp (β1t) dt (this being the standard
definition of an integral via approximating sums). Combining these results, it is seen that
the approximating log-likelihood (6.9) becomes equivalent to the exact IPP log-likelihood
(6.8) as �t tends to zero. �
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This example demonstrates the intuitively obvious fact that when using GLMs or
GAMs to fit an IPP model, the accuracy of the approximation increases as �t becomes
smaller. Of course, this attracts some computational cost as the ‘sample size’ T/�t

increases; however, this is perhaps not a major issue with modern computing power. In
practice, the temporal resolution of covariate data will often be the main limitation to the
accuracy that can be achieved.

As with all statistical models, it is useful to check the adequacy of any IPP model
after fitting. In this respect, a useful diagnostic makes use of the fact that a temporal IPP
with intensity function λ(·) can be transformed into a homogeneous Poisson process with
unit rate (i.e. for which λ = 1) by rescaling the time axis according to the transformation

τ(t) =
∫ t

0
λ(u)du.

Thus, if an IPP model has been fitted to a sequence of events at times t1, . . . , tN to yield
an estimated intensity function λ̂(·), one can compute the rescaled occurrence time of
each event as τ(tj ) = ∫ tj

0 λ̂(u)du. The sequence τ(t1), . . . , τ (tN ) should behave like a
realisation of a homogeneous Poisson process with unit rate; this can be assessed using
the methods outlined above. For more details, see Ogata (1988).

6.3.2 Other point process models

A key assumption in Poisson process models is that the numbers of events in disjoint time
intervals are independent random variables. In many applications this is unrealistic: for
example, major earthquakes are usually followed by several aftershocks so that earthquake
occurrence times tend to be more clustered than under a Poisson process model. Many
models are available for such clustered point process data; for the specific example of
earthquake sequences, the class of self-exciting processes introduced by Hawkes (1971a,
1971b), has been applied extensively (e.g. Ogata, 1989; Ogata and Vere-Jones, 1984).
An appealing feature of this class is that it can be fitted using likelihood methods; the
fitting of other families of clustered point process models, such as the Neyman–Scott and
Bartlett–Lewis families (Cox and Isham, 1980, Section 3.4), is rather more difficult. Fur-
thermore, limited progress has been made in developing tractable nonstationary versions
of these models, which would be necessary for trend analysis purposes. A substantial
amount of effort has been devoted, however, to the analysis of spatial and spatiotem-
poral point processes, and it is possible that the ideas could be applied to the purely
temporal setting without too much difficulty. For an accessible review of spatial point
processes, see Diggle (2003); a more detailed account of modern developments is given
by Møller and Waagepetersen (2003) and an application in which nonstationary clustered
point process models are fitted to spatial data (the locations of trees in a forest) is given
by Waagepetersen (2007).

The presence of clustering in point process data induces positive correlation between
the counts in successive intervals and, like nonstationarity, is a possible cause of overdis-
persion (see Section 6.3.1). Underdispersion, corresponding to negative correlation at short
timescales, is also possible; it is encountered less frequently, however. We have encoun-
tered the phenomenon in relation to the study of tropical cyclones: this is presumably
because the occurrence of a cyclone in a particular region dissipates a huge amount of
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energy, as a result of which further cyclone formation tends to be inhibited for a short
time afterwards. Another environmental example is provided by Ridout and Besbeas
(2004), in relation to clutch sizes (i.e. numbers of eggs per nest) for a particular species
of bird. Unfortunately, few models are available for underdispersed point process data.
A pragmatic approach to their analysis may therefore be to discretise to a sufficiently
fine timescale that at most one event occurs in any time interval, and to analyse the
resulting zero–one series of counts as a binary time series, for example using GLMs
(Section 3.5) in which lagged observations are used as covariates to account for the
negative autocorrelation.

6.3.3 Marked point processes

Often, the occurrence of an event in a point process is accompanied by one or more items
of other information (marks), such as the magnitude of an earthquake or the number of
individuals seen at a particular sighting of a rare species. In this case we have a marked
point process . The sequence of marks forms an irregularly spaced time series and could
therefore be analysed in principle using methods such as those described in Section 5.4.
However, those methods are designed primarily for situations in which an underlying
continuous-time process is sampled at the observation times; in the case of marked point
processes this is not always the case. When analysing earthquake sequences, for example,
magnitudes can only be associated with earthquakes that actually occur. In this case it
may be more natural to treat the marks themselves as a regularly spaced time series,
possibly considering the interevent intervals as covariates.

6.4 Trends in extremes

It is not unusual to find applications in which the study of a particular system is motivated
by the risk of adverse consequences from ‘extreme’ conditions: for example, abnormally
high rainfalls lead to floods and abnormally high temperatures can be associated with
increased human mortality. In particular, trends in extremes may be of interest, to deter-
mine whether the risk of such adverse events is changing.

In most of the methods discussed so far in this book, the observations are regarded
as realised values of random variables: in the presence of trends, the associated prob-
ability distributions change through time. To study trends in extremes, therefore, one
might choose to fit an appropriate statistical model to the data and to study the temporal
changes in the tails of the fitted distributions. If the available data contain enough of the
‘extreme’ events of interest, this approach can be useful. However, if interest lies in much
rarer events, the available data may not contain sufficient information to provide reassur-
ance that the fitted model represents the extremal behaviour adequately. The following
hypothetical example illustrates this.

Example 6.3
An engineering company is commissioned to design a structure with an intended lifetime
of 20 years. However, extreme weather conditions will cause the structure to fail. The
company wishes to know how strong the structure needs to be in order that the overall
probability of failure, at any point during its intended lifetime, is less than 10 %.

This question can be considered by making two simplifying assumptions: first, that
the probability p of failure due to extreme weather conditions in any given year is the
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same throughout the intended lifetime of the structure and, second, that the occurrence
of such extreme conditions is independent from year to year. In this case the overall
probability of failure during the 20-year lifetime is

P(Failure at some point) = 1 − P(No failures in any of the 20 years)

= 1 − (1 − p)20

under the simplifying assumptions given above. If the overall probability of failure is to
be less than 0.1, we therefore require

1 − (1 − p)20 < 0.1 ⇒ (1 − p)20 > 0.9 ⇒ (1 − p)> 0.91/20 = 0.9947,

and hence p < 1 − 0.9947 = 0.0053. Now the average time between successive events
that occur with probability 0.0053 independently each year is 1/0.0053 = 189 years:
this is called the return period of the event. The engineering company therefore
needs to design for conditions that occur roughly once every two hundred years.
Clearly, few (if any) existing data sets will contain reliable direct information regarding
such conditions. �

In reality, of course, the assumptions underlying the calculation in this example are
unlikely to be met: in particular, in a changing climate the probability p will evolve
over time. However, the example does illustrate that to limit the risk of some adverse
event considered over even a relatively modest time horizon (20 years in this instance),
it can be necessary to consider the likely magnitudes of very rare events and hence to
extrapolate well beyond the range of the available data. To have any kind of confidence
in such extrapolation, more is required than simply to show that a particular model fits
the data well. If, for example, we could appeal to some generally applicable theory that
suggests a particular class of distributions for ‘extreme’ observations, this would lend
some credence to extrapolations based on this class. The approach is directly analogous
to the use of the central limit theorem (for example Wackerly, Mendenhall and Scheaffer,
2007, Section 7.3) to motivate the normal distribution as a model for quantities (such as
annually aggregated time series) that can be regarded as sums or averages.

6.4.1 Approaches based on block maxima

Fortunately, there is a well-developed body of theory relating to distributions for extremes.
This dates back to the work of Fisher and Tippett (1928), who showed that if Mn denotes
the largest value obtained from n independent, identically distributed random variables
X1, . . . , Xn then, if Mn has a limiting distribution after suitable normalisation, it must
belong to one of three types: the Gumbel, Fréchet or (reverse) Weibull. Subsequently,
von Mises (1954) and Jenkinson (1955) proposed combining the three types into a single
parametric family, nowadays referred to as the generalised extreme value (GEV) distri-
butions. A random variable Y has a GEV distribution with parameters μ ∈ R, σ > 0 and
ξ ∈ R if its distribution function, defined for {y : 1 + ξ(y − μ)/σ > 0}, is

G(y) = P(Y ≤ y) =

⎧⎪⎪⎨
⎪⎪⎩

exp
{− exp

[− (y − μ) /σ
]}

, ξ = 0,

exp

{
−

[
1 + ξ

(
y − μ

σ

)−1/ξ
]}

, otherwise.
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The parameters μ, σ and ξ are referred to as location , scale and shape parameters
respectively. The cases ξ = 0, ξ > 0 and ξ < 0 correspond to the Gumbel, Fréchet and
Weibull distributions respectively. The distribution of the original {Xi} determines which,
if any, of these cases holds: in this case, the original distribution is said to be in the
maximum domain of attraction of the corresponding GEV. For some discrete distributions,
such as the Poisson and geometric, no limiting distribution for maxima exists (Embrechts,
Klüppelberg and Mikosch, 1997, Section 3.1). However, for many standard continuous
distributions including the normal, exponential and gamma families, the maximum has a
limiting Gumbel distribution; for ‘heavy-tailed’ distributions the limit is Fréchet and for
distributions with a finite upper endpoint the limit is Weibull.

The existence, in a wide range of settings, of the GEV limiting distribution for maxima
suggests a strategy for the analysis of rare events in a time series: split the series into
blocks of equal length, extract the largest value in each block, fit a GEV distribution
to the resulting sample of ‘block maxima’ and use the fitted distribution to extrapolate
beyond the range of the data. In Example 6.3 above, one might fit a GEV distribution to
the observed annual maxima of the weather variable of interest: the 0.9947 quantile of the
fitted distribution then provides an estimate of the size of event for which the company
must design. The usual checks of modelling assumptions should, of course, be carried
out but, providing these checks reveal no obvious problems with the model, one might
feel more comfortable with the use of a model that has both theoretical and empirical
justification. If interest lies in minima rather than maxima, the same procedure can be
used: simply reverse the sign of all the data values prior to analysis so as to convert
minima to maxima.

Initially, the conditions leading to the GEV distribution above may appear restrictive:
it arises by considering the maximum of a large number of independent, identically dis-
tributed observations. Fortunately, it can be shown that the requirement of independence
is not necessary: the GEV limit also applies to maxima of stationary sequences, at least
in the absence of long memory which, in this context, has a slightly different technical
definition from that given in Section 5.3; see Coles (2001, Section 5.2) and Embrechts,
Klüppelberg and Mikosch (1997, Section 4.4). The requirement for the {Xi} to be iden-
tically distributed is also potentially problematic: in many environmental applications, it
is convenient to consider a year as the basic time unit and hence to fit distributions to
annual maxima. However, environmental series often display seasonality, so that obser-
vations within a year cannot be considered to be identically distributed (this has led
some authors to consider modelling monthly maxima instead; see, for example, Rust,
Maraun and Osborn, 2009). Experience suggests, however, that the GEV often provides a
good fit to samples of annual maxima. For a heuristic explanation of this, consider what
would happen if we randomly reordered the entire time series and then split the result
into yearly blocks. The reordered observations are now guaranteed to be identically dis-
tributed, because each of them is equally likely to be any one of the original observations:
the GEV result therefore holds for the maxima of the reordered sequence. However, the
sample of annual maxima in the reordered sequence will generally be rather similar to
the sample of maxima from the original ordering, at least providing the series is long
enough; thus the two samples will lead to similar fitted models.

We now consider how to exploit the results above to study trends in extremes. As
discussed at the beginning of this section, such trends correspond to temporal changes
in the underlying distributions. Since the GEV distribution is characterised by just three
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parameters, trends in extremes can be modelled by fitting GEV distributions to time
series of block maxima and allowing one or more of the parameters to depend on covari-
ates. Model fitting, and comparison of nested models to test for trends in one or more
parameters, can be carried out using maximum likelihood (see Section 3.5). For example,
Coles (2001, Section 6.3) fits GEV distributions to annual maximum sea levels at Fre-
mantle, Western Australia, and finds evidence for a linear trend in the location parameter:
μt = μ0 + μ1t , where the time index t is measured in years. The extension to nonparamet-
ric representations of trends in GEV parameters, using methods similar to those described
in Chapter 4, has been considered by Davison and Ramesh (2000). In R, routines for
maximum likelihood fitting of GEV distributions, both with and without covariates, are
available in the ismev library (Coles and Stephenson, 2006).

In Example 6.3, the concept of a return period was introduced as the average time
elapsing between events of a given magnitude. This concept clearly has limited validity
in the presence of trends: in this case, it is necessary to identify the planning horizon of
interest (for example 20 years in the example above) and to study directly the properties
of the largest value experienced over this period. Cox, Isham and Northrop (2002) have
done this analytically for the nonstationary Gumbel case. They show in particular that
a simple approach, in which calculations are based on a stationary Gumbel distribution
with location and dispersion parameters corresponding to the midpoint of the planning
horizon, leads to a slight underestimation of the maxima of interest. The extension to the
GEV distribution does not appear to have been attempted, however.

The use of block maxima to study extremes has the potential disadvantage of being
wasteful of data: by discarding all but the largest observation in each block, one typically
ends up with a relatively small sample of maxima. This limits the precision with which
model parameters can be estimated, and hence also the ability to detect trends in extremes.
One way around this is to extend the methodology to retain the r > 1 largest observations
in each block: arguments similar to those justifying the GEV distribution as a model for
maxima can be used to deduce a limiting joint distribution for these largest observations.
For details, see Coles (2001, Section 3.5).

6.4.2 Approaches based on threshold exceedances

An alternative approach to the analysis of extremes is to consider all observations that
exceed some high threshold. Specifically, let X be any random variable and consider
the quantity

Hτ (x) = P (X − τ ≤ x|X > τ) ,

for some threshold τ . Conditional on X exceeding τ , therefore, Hτ (x) is the distribu-
tion function of the magnitude of the threshold exceedance. To characterise the extremal
behaviour of the distribution of X, we consider what happens as τ increases to infinity.
In this case it can be shown (Coles, 2001, Section 4.2) that if the distribution of X is
in the maximum domain of attraction of a GEV(μ, σ, ξ) for block maxima, Hτ (x) is
increasingly well approximated by

H(x) =
{

1 − exp (−x/σ ∗) , ξ = 0,

1 − (
1 + ξx/σ ∗)−1/ξ

, otherwise,
(6.10)
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where σ ∗ = σ + ξ(τ − μ). In this case, the limiting distribution of the threshold
exceedance X − τ |X >τ is called the generalised Pareto distribution (GPD) with
parameters σ ∗ and ξ . The expected value of the distribution is σ ∗/ (1 − ξ). When ξ = 0,
the GPD reduces to an exponential distribution with mean σ ∗.

The existence of the GPD limit suggests that, in practice, a GPD distribution should
provide a reasonable fit to exceedances of high but finite thresholds. Given an independent,
identically distributed sequence X1, . . . , Xn therefore, one could choose a high threshold
τ and fit a GPD distribution (for example using maximum likelihood) to the exceedances
{Xi − τ : Xi > τ }. The precision of the resulting parameter estimates will depend on the
number of observations exceeding τ . Obviously, reducing τ will increase the number of
such observations, but at the same time the use of the GPD is justified only if τ is ‘large’
in some sense. In practice, therefore, one will usually want to choose the smallest value
of τ for which the GPD distribution appears to provide a reasonable fit to the data. One
way to identify such a threshold (implemented in R via the routine gpd.fitrange in
the ismev library) is based on the observation that if the GPD limit has effectively been
achieved at some threshold τ then it will also hold for all higher thresholds. Examination of
(6.10) shows that the shape parameter of the limiting GPD is the same for all thresholds.
Moreover, the dispersion parameter σ ∗ increases linearly with the threshold in such a
way that the quantity σ ∗ − ξτ = σ − ξμ (in the parameterisation of the associated GEV
distribution) is threshold-independent. Thus, to identify an appropriate threshold one could
fit a GPD at a range of thresholds τ1 < τ2 < · · · < τm and plot the estimates of ξ and
σ ∗ − ξτi at each threshold: these estimates will behave unpredictably at thresholds that
are too low, but should stabilise at a roughly constant value once a high enough threshold
has been achieved. For more details, see Coles (2001, Section 4.3).

Having fitted a GPD to threshold exceedances, estimates of extremal properties can
be obtained by noting that for any x > 0, P (X ≤ τ + x) can be written as

P (X ≤ τ + x|X > τ)P (X >τ) + P (X ≤ τ + x|X ≤ τ)P (X ≤ τ).

Now P (X ≤ τ + x| X >τ) = Hτ (x), which, under the GPD, is modelled according
to (6.10). Next, let π = P(X > τ) = 1 − P(X ≤ τ). Finally, notice that, for x > 0,
P (X ≤ τ + x|X ≤ τ) = 1. Putting these results together, we have

P (X ≤ τ + x) = πHτ (x) + 1 − π.

The probability π can be estimated as the proportion of observations exceeding τ and
Hτ (x) can be estimated using the fitted GPD. Thus the model can be used to estimate,
for example, the return period of any event with magnitude greater than τ . In general, the
number of threshold exceedances available for fitting GPD distributions is substantially
greater than the number of, say, annual maxima in a time series, with a corresponding
increase in the precision with which quantities of interest can be estimated.

The potential presence of autocorrelation in a time series is more problematic for
threshold exceedance methods than for block maxima: extreme events may span several
time points so that the assumption of independent threshold exceedances is not tenable. A
simple, and widely used, solution to this problem is to ‘decluster’ the exceedances prior to
analysis: some heuristic criterion is used to identify groups of one or more exceedances
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that are considered to belong to the same event, and the analysis is restricted just to
the largest observations from each group (see, for example Davison and Smith, 1990
and Smith, 1989). More sophisticated alternatives, which aim explicitly to model the
dependence structure, are also available; see Embrechts, Klüppelberg and Mikosch (1997,
Section 8.1) and references therein.

In the presence of nonstationarity, by analogy with the methods discussed above
for block maxima one could consider allowing the parameters of the GPD to be
covariate-dependent. There are some additional complications when working with
threshold exceedances, however. An obvious one is that the probability of exceeding
some threshold τ will itself change over time. In principle, this can be dealt with
by incorporating covariate information into the threshold exceedance rate as well as
into the GPD parameters; this is discussed in the next subsection. Another difficulty
is that without severe restrictions on the form of covariate dependence, models fitted
at different thresholds are incompatible. This was pointed out by Eastoe and Tawn
(2009), who suggested that one could alternatively study threshold exceedances in the
residuals from a nonstationary model fitted to the entire data set. The hope is that by
working with residuals, most of the nonstationarity will have been removed, thus leading
to simpler models for the threshold exceedances. Eastoe and Tawn (2009) also show
how to calculate the marginal probabilities of extreme events from threshold models
in the presence of covariates. A third possibility, in some sense lying between the
‘fixed threshold’ and ‘residual’ approaches, is to model exceedances over a time-varying
threshold, chosen to ensure that the exceedance rate is roughly constant. Quantile
regression (Section 4.3.5) may be used to set such a threshold. For examples of this
approach, see Kyselý, Picek and Beranová (2010) and Friedrichs (2010).

Usually, in statistical models where parameters are covariate-dependent, one can draw
conclusions about the conditional distribution of the variable of interest given the covari-
ate(s). When working with threshold exceedances, however, some care is required since
by definition any relationships are conditional on the response variable being extreme.
To illustrate the point, suppose that a GPD is fitted to daily threshold exceedance data
and it is found that the dispersion parameter σ ∗ increases with some covariate. In this
case, since the mean of the GPD is proportional to σ ∗ (see above), it is tempting to con-
clude that large values of the covariate are associated with higher extremes on average.
However, this conclusion is unwarranted without making further assumptions. It could
be, for example, that the covariate values were typically larger on days that were not used
in the model fit because the response variable was below the threshold. This can easily
be checked, however: divide the observations into two groups corresponding to threshold
exceedances and nonexceedances, and compare the distributions of the covariate values in
these two groups. If these distributions are similar or if covariate values tend to be higher
in the ‘exceedance’ than the ‘nonexceedance’ group, then one can legitimately conclude
that increases in the covariate are indeed associated with higher extremes. It is nonetheless
slightly unsatisfactory that the models are fitted to data that are sampled conditional on
values of the response variable. To some extent, the residual modelling approach of Eastoe
and Tawn (2009) deals with the problem automatically since (hopefully) the residuals are
largely free of covariate effects. As an alternative one might consider fitting models that
consider both the extreme and nonextreme observations simultaneously, while retaining
the asymptotic arguments that justify extrapolation into the tails of distributions. Such
models are discussed in the next subsection.



256 METHODOLOGY

6.4.3 Modern developments

The use of block maxima and threshold exceedance methods to analyse extremes has
been widespread since at least the 1960s.2 We have seen that exceedance methods are less
wasteful of data, and hence have the potential for more precise inference, than methods
based on block maxima. However, as noted above, when analysing threshold exceedances
in nonstationary series, it is necessary to consider the effect of covariates upon exceedance
rates as well as upon the distribution of the exceedances themselves. As a first step in
this direction, one could start by observing that the times at which exceedances occur
form a point process: if this process is an inhomogeneous Poisson process, then the
methods of Section 6.3 can be used to model covariate effects and trends in the intensity
function (which, in this context, represents the time-varying threshold exceedance rate).
In principle, therefore, one could combine such an analysis with a GPD analysis of the
exceedances themselves to build up a complete picture of the extremal behaviour.

The connection with point processes may be developed further. Consider plotting
an observed time series (yt : t = 1, . . . , T ) with the time axis rescaled to the interval
(0,1) and with all observations below some threshold τ removed: specifically, the points
{(t/(T + 1), yt ) : yt > τ } are plotted. This is illustrated in Figure 6.2: the data here are
daily wind speeds at De Bilt (see Section 1.3.1) between 1981 and 2000. The threshold
exceedances are shown in black. On the plot, these exceedances appear as a point process
in two dimensions: the ‘horizontal’ dimension represents rescaled time in the range (0, 1)

and the ‘vertical’ dimension represents the magnitude of the exceedance in the range
(τ, ∞). In fact, as shown by Pickands (1971), under the same conditions that gave rise
to the GPD distribution in the previous subsection, for large values of T and τ this point
process is approximately an inhomogeneous Poisson process.3 At location (t∗, y) on the
plot, the intensity function of this process is

[
1 + ξ

(
y − μ

σ

)]
,

where (μ, σ, ξ) are the parameters of a GEV distribution for the largest of the T observa-
tions. As noted by Smith (1989), this point process characterisation of extremes provides
an alternative means of fitting models using maximum likelihood, where now the like-
lihood is derived from the inhomogeneous Poisson process. Moreover, it is possible to
reparameterise in such a way that the parameters of the point process correspond directly to
GEV distributions for (say) annual maxima (Coles, 2001, Section 7.5): this aids interpre-
tation, and also can be regarded as unifying the block maxima and threshold exceedance
approaches. To accommodate trends and other forms of nonstationarity, the parameters
can be made covariate-dependent in the usual way. In R, the ismev library contains

2 The 1975 UK Flood Studies Report (NERC, 1975) gave an excellent summary of the state of
the art as practised in hydrology at the time, and set out the rationale for using extreme value methods
in a way that makes for interesting reading today. In addition to the theoretical arguments given
above, the authors pointed out that, historically, extreme events were more likely to be recorded
than unexceptional values so that relatively long and complete records are available for extremes;
also where complete time series were available, discarding all but the extreme observations was
potentially helpful at a time when the available computer power was insufficient to contemplate the
routine analysis of large data sets.

3 An inhomogeneous Poisson process in two dimensions is defined in exactly the same way as
for the one-dimensional case, but with regions of the plane replacing intervals on the real line.
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Figure 6.2 Two-dimensional point process of threshold exceedances for daily wind speed
data from De Bilt, 1981–2000. The threshold used here is the 99th percentile of the overall
wind speed distribution. Observations below the threshold are shown in grey.

routines for fitting and checking point process models for extremes. The methodology
has also been extended by Chavez-Demoulin and Davison (2005) to allow nonparametric
representation of trends in the model parameters.

Much current research into extremes centres on the development of tractable models
for use in multivariate and spatial contexts; see De Haan and Pereira (2006), Butler
et al. (2007), Cooley, Nychka and Naveau (2007), Eastoe (2009), Naveau et al. (2009)
and references therein. In a temporal setting, an interesting development is the work of
Toulemonde et al. (2009), who formulate autoregressive models that allow explicitly for
autocorrelation in sequences of Gumbel-distributed maxima.

6.5 Censored data

In environmental applications as elsewhere, it is not always possible to record the exact
values of the variable(s) of interest due to limitations in the measuring equipment. In
pollution monitoring studies, for example, sensors may not be able to detect pollutant
concentrations below some threshold (often referred to as the limit of detection , or LOD).
At the other end of the scale, measuring equipment may fail at particularly high values
of a variable such as wind speed. In such cases, values within the range of operation of
the measuring equipment will be recorded exactly but values outside this range are often
recorded merely as less than or greater than the appropriate threshold. Such data values
are said to be censored . Notice that censoring is not the same as missingness: a censored
value is known to lie in a particular interval, and thus provides information that can be
incorporated into an analysis. Here we give a brief overview of methods that may be used
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to deal with censored data in the context of a trend analysis. We focus primarily on the
case when small values of non-negative variables are censored, since this is the situation
most commonly encountered in environmental applications. Most of the ideas can be
applied, with obvious small modifications, to the case where large values are censored.
For more details, see Helsel (2005) and Manly (2001, Chapter 10).

Where non-negative data are recorded as ‘below LOD’, one of the simplest approaches
to the analysis is to substitute the censored values with some value between zero and the
detection limit. Although common in practice, this approach has little to recommend
it since it leads to underestimation of variability, as well as to potential biases when
estimating trends and covariate effects. The approach is particularly problematic when, as
is often done in the context of analyses of pollutant loadings, the data are log-transformed
prior to analysis. Such a transformation maps the finite interval (0, LOD) to the range
(−∞, log LOD): it should be clear that to assume any specific value in this semi-infinite
range without good reason is foolhardy at best!

In situations where it is appropriate to assume a particular parametric form for the
distribution of the response variable of interest, censored data can be handled easily in a
likelihood based setting, at least in the absence of autocorrelation. Recall from Section 3.5
that if all data values are observed exactly, the likelihood function for the parameters of
a model is defined, for each value of the parameter vector, as the joint density of the
observations given the parameters. When the observations can be considered independent,
this joint density is simply a product of contributions from each time point so that the
log-likelihood is a sum. For censored data, the idea is easily modified: for each censored
observation, the density of the observed value is replaced with the probability of the
observation lying in the censoring interval so that the likelihood function is defined as

L (θ; y) =
[∏

t∈U
ft (yt ; θ)

]
×

[∏
t∈C

P (Yt ∈ It ; θ)

]
,

where U denotes the set of times for which the observations are known exactly (i.e. are
uncensored), ft (·, ·) denotes the density of the observations, C denotes the set of times for
which the observations are censored and, for t ∈ C, It denotes the interval within which
Yt is known to lie. The log-likelihood is the logarithm of this quantity and, for any value
of θ , can be calculated easily using modern software routines with built-in routines for
calculating quantities such as P (Yt ∈ It ; θ). This log-likelihood can then be maximised
using numerical techniques (for example using the routines nlm or optim in R) and, if
necessary, the expected information matrix (and hence standard errors for the parameter
estimates – see Section 3.1.6) can be estimated via numerical differentiation.

Example 6.4
Suppose that it is desired to fit the linear trend model (3.1) to the logarithms (assumed
to be normally distributed) of a sequence y1, . . . , yT of non-negative pollutant loading
measurements, but that the LOD is τ > 0 so that any values less than τ are censored. In
the absence of censoring, the log-likelihood of the data would be

� (β0, β1; y) =
T∑

t=1

log φμt ,σ (log yt ) = − 1

σ 2

T∑
t=1

(log yt − μt )
2 + constant,

where μt = β0 + β1t is the trend function and φμt ,σ (·) denotes the density of a normal
distribution with mean μt and standard deviation σ . In the presence of censoring, let C be
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the set of times corresponding to censored observations. In this case, the log-likelihood
for the parameters is

� (β0, β1; y) =
∑
t /∈C

log φμt ,σ (log yt ) +
∑
t∈C

log μt ,σ (log τ) , (6.11)

where μt ,σ (·) denotes the distribution function corresponding to φμt ,σ (·): μt ,σ (z) =∫ z

−∞ φμt ,σ (u)du. Both φμt ,σ (·) and μt ,σ (·) are easily calculated using modern software
packages, for example using routines dnorm and pnorm in R. Thus the log-likelihood can
be calculated for any values of β0, β1 and σ . Notice that, in contrast to the uncensored
case, the values of β0 and β1 maximising (6.11) will generally depend on the error
variance σ 2. �

The problem of censoring occurs widely in the context of clinical trials where the
response variable is the lifetime of a patient. Here, censoring occurs when a patient
survives beyond the end of a trial so that the exact lifetime is known only to exceed
the corresponding duration. In survival analysis , it is common to accommodate censoring
in a likelihood based framework along the lines sketched above; see Davison (2003,
Sections 5.4 and 10.8). The survival library in R (Therneau and Lumley, 2008) provides
a comprehensive implementation of many of the techniques commonly used in survival
analysis; such methods do not yet seem to have been widely adopted in the environmental
sciences, however.

As usual, likelihood based methods have many advantages when their use can be
justified. In practice, this means that the available data must be sufficiently complete that
diagnostics can be carried out to check the distributional assumptions underlying any
likelihood based analysis. If this is not the case then it may be preferable to use more
robust methods for which fewer assumptions are required. One such approach, which
may be appropriate in situations where there is a heavy degree of censoring, is to convert
the time series into a binary sequence in which each observation is recorded merely as
being above or below the censoring threshold: trends in this sequence can then be analysed
using methods for binary data such as those described in Section 3.5. A more sophisticated
approach derives from the observation that if the proportion of censored observations is
high then, by definition, the uncensored observations must be extreme in some sense.
This suggests that an extreme value analysis of the uncensored observations, using the
threshold exceedance or point process methods of Section 6.4, may be profitable.

A more traditional method of dealing with censored data in environmental applications
is to use rank based methods, on the basis that the data can still be ordered from smallest
to largest without knowing the exact values of the censored observations: these may be
treated as ties in the ranking. To test for the existence of trends, therefore, techniques
such as the Mann–Kendall test (see Section 2.4), adjusted appropriately for ties, may be
used. If interest lies rather in the slope of a linear trend, the Theil–Sen estimator may be
adapted to deal with the censoring: see Akritas, Murphy and LaValley (1995).

The discussion above has implicitly assumed that there is only one censoring
threshold in a time series. Matters are complicated if there are multiple thresholds – for
example if the sensitivity of measuring equipment changes through time. For some of the
approaches outlined above, small adjustments are required: for example, in a likelihood
based approach, the contribution to the log-likelihood from each censored observation
may still be computed using the appropriate censoring threshold. Rank based methods
face the difficulty that observations that are censored at different thresholds cannot be
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ordered relative to each other. However, it may be argued (Helsel, 2005, page 189) that
such pairs of observations where the ordering is indeterminate should be considered as
ties and that the usual rank based procedures can be used on this basis.

Finally, we have not discussed the analysis of censored data in the presence of auto-
correlation. Indeed, this issue does not seem to have received much attention in the
literature. As noted in Section 2.4, most rank based test procedures implicitly assume that
successive observations are uncorrelated, so that these should be treated with scepticism
if autocorrelation is likely to be present. Likelihood based approaches can rapidly become
intractable, particularly if a series contains successive observations that are censored. Per-
haps the most straightforward methods for dealing simultaneously with autocorrelation
and censoring are those based on converting the series into a binary sequence and the
extension to use threshold exceedance methods from extreme value theory. In the for-
mer case, autocorrelation can be dealt with by including appropriate lagged values of the
response variable into a model for the binary time series, and in the latter it can be dealt
with by declustering the exceedances prior to analysis, as discussed in Section 6.4.
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7.1 Introduction

European governments were sufficiently convinced about the potential ecological harm of
acid rain that they signed the Convention on Long-Range Transboundary Air Pollution in
1979. The convention facilitated the negotiation of concrete measures to control emissions
of air pollutants, initially focused on sulfur dioxide (SO2), and also the operation of net-
works to monitor air pollution across Europe under the EMEP programme (Co-operative
Programme for Monitoring and Evaluation of the Long-Range Transmission of Air Pol-
lutants in Europe). The monitoring networks run under the EMEP programme were all
funded by national governments and, although there were continuing efforts to provide
data sets to a uniform standard across the continent, there were inevitable inconsistencies.
However, the data do provide a valuable record of change during a period when emissions
of SO2 decreased dramatically. The characteristics of the data sets are:

• Different methods of measurement are used by different countries and hence pre-
cision and limits of detection vary.
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• At many sites the measurement method has changed at some time during the series,
sometimes as a result of changing science priorities.

• Numbers and locations of sites vary as national political policies and funding criteria
alter.

• There are potentially long periods of missing data at some sites.

Initial inspection of the monitored concentrations indicated a decreasing trend over
time, but certainly not generally a linear trend and not obviously directly linked to emis-
sion reductions. As the emitted sulfur in SO2 can remain in the atmosphere for several
days and travel about 5000 km before its deposit on the land surface, a simple direct link
with emissions is unlikely. The underlying science suggests that the measured concentra-
tion observed at any site will be related to emissions, weather conditions and atmospheric
chemistry. Giannitrapani et al. (2006) analysed the effects of pollutant emissions on mon-
itored concentrations.

This chapter will look at the effects of meteorology on pollutant concentrations. The
statistical framework of additive modelling provides one possible approach to study how
covariates can influence the observed concentration profile. This case study was part
of a larger study considering data on SO2 gas concentrations. Here we will consider
measurements made at a single site, at Kosetice in the Czech Republic, since the late
1980s. Data were collected as daily average concentrations and preliminary analyses
showed that:

(a) The daily values had a skewed distribution and there were some outliers.

(b) There was high variability in the daily observations.

(c) There was evidence of nonlinear trends.

(d) There were seasonal effects.

(e) There was a ‘day of the week’ effect.

Skewness was addressed by applying a log transformation. In order to accommodate zero
values, half of the smallest nonzero value was added to all data points before the log
transformation was applied.

As the aim of the study is to investigate trends over periods of 10 or 20 years, the
treatment of the variability at short time scales is not critical to the outcome as long as
no important and unrecognised bias is introduced. The modified data used for the case
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Figure 7.1 Left to right: daily SO2 measurements at Kosetice in the Czech Republic;
daily data on a log scale; weekly data, also on a log scale.
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study were the weekly means of the log SO2 values. However, there is clear evidence
of a ‘day of the week’ effect and so, in order to protect against bias as a result of
missing daily observations, the data were first adjusted by fitting a linear model with
‘day of the week’ as a factor. These adjusted data were then used to compute the weekly
means, under the reasonable assumption that the ‘day of the week’ effect is similar over
the years of interest. The weekly data showed less variability and, with fewer data points,
the computations were considerably faster. Figure 7.1 shows the SO2 concentrations on
the original daily scale (left panel), on the natural log scale (middle panel) and on the
weekly means of logged daily data (right panel). An additional advantage of the weekly
data is a reduced effect of the change in resolution that is apparent in the late 1990s.

7.2 Additive models with correlated errors

7.2.1 An introduction to additive models

Nonparametric smoothing techniques aim to provide a means of modelling the rela-
tionships between variables without specifying any particular form for the underlying
regression function (see Chapter 4). In the simplest setting, interest lies in estimating the
regression function m(·) in a relationship between a response variable y and a covariate
x, expressed in the model y = m(x) + ε, where ε denotes independent random error.
When several covariates are present, Stone (1985), Buja, Hastie and Tibshirani (1989)
and Hastie and Tibshirani (1986) proposed to extend the idea of multiple regression into
a flexible form known as an additive model. For data {(yi, xi1, . . . , xip); i = 1, . . . , n} the
model can be represented as

yi = μ +
p∑

j=1

mj(xij ) + εi, (7.1)

where the j th covariate has its own associated component mj and the regression function
is constructed from the combination of these components. All predictor effects are additive
and can be examined separately, but there is no form specified for the explanatory variable
functions mj(xij ). The remaining terms are a constant, μ, and an error term, ε, which in
the simple case of independent errors is assumed to be distributed as N(0, σ 2).

The assumption of independent errors implies that there is no systematic association
between the errors (or discrepancies between the observations and predicted values) for
consecutive observations. The series of SO2 concentrations in Figure 7.1 clearly show
patterns throughout the year: a high concentration is more likely to be followed by another
high concentration than a very low concentration. If the explanatory variables give a
sufficiently detailed explanation of why the concentrations form these patterns, then the
assumption of independent errors is reasonable. However, a wide variety of applications
generate data that are subject to correlations of various types, often temporal or spatial,
and this is likely to be the case with the present data. A more general assumption that the
error vector follows an N(0, σ 2R) distribution gives the flexibility to introduce temporal
correlation in the residuals through the correlation matrix R. A simple approach, such as
modelling residuals as a first-order autoregression (see Section 3.3.3), is often adequate.

The additive model is an extension of general linear regression, and this is the out-
come if the functions {mj(xij )} are the simple linear combinations {βjxij }. When it is
more helpful to allow the data to determine the shape of the trend, rather than using a
predetermined function such as a linear or exponential form, then the explanatory variable
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functions mj(xij ) can be of arbitrary, but smooth, shape. Smoothing procedures can be
used to estimate a trend for a response, y, which is less variable than y and is a function
of explanatory variables x1, x2, . . . , xp.

7.2.2 Smoothing techniques

As discussed in Chapter 4, a wide variety of smoothing techniques (for example splines,
lowess and local linear regression) is available, but the end result is usually relatively
insensitive to the particular technique adopted. In this chapter, the local linear regression
smoother (Cleveland, 1979) is used. This is a weighted regression of the response on
the values of the explanatory variables in the neighbourhood. For observed data with a
single explanatory variable, {(yi , xi); i = 1, . . . , n}, the estimate m̂(x) is the least squares
estimator α̂ from

min
α,β

n∑
i=1

{yi − α − β(xi − x)}2w(xi − x; h). (7.2)

The weight function w(.; h) should be a smooth, symmetric, unimodal function and the
smoothing parameter or bandwidth, h, determines the size of the neighbourhood of x

considered. The normal density function with mean 0 and standard deviation h,

w(xi − x; h) = exp

[
− (xi − x)2

2h2

]
, (7.3)

is commonly used. Local linear regression has a number of attractive properties (Fan,
1993; Fan and Gijbels, 1992). Conceptually, it can be viewed as a relaxation of the usual
linear regression model. As h becomes very large the weights attached to each observation
by the kernel functions become more similar and the curve estimate approaches the least
squares regression line. It is appealing to have this standard model within the nonpara-
metric formulation. Approximate expressions for the bias and variance of the estimate are
available from Ruppert and Wand (1994) as

E [m̂(x)] ≈ m(x) + h2

2
σ 2

w

d2m

dx2
(7.4)

and

Var [m̂(x)] ≈ σ 2

nh

aw

f (x)
, (7.5)

where σ 2
w = ∫

z2w(z)dz, aw = ∫
w(z)2dz and f denotes the local density on the x axis of

the observations. Expression (7.4) shows that the larger the smoothing parameters and the
degree of curvature (d2m/dx2), the greater the bias. Conversely, expression (7.5) shows
that the larger the smoothing parameters and the density of the observations close to x, the
smaller the variance. A good choice of smoothing parameter achieves a suitable balance
between bias and variance.

If the observed data are not linear, there is a trade-off between bias and variance
as the bandwidth changes, as illustrated in the weekly mean log(SO2) concentrations in
Figure 7.2. With large values of h, the estimate approaches a linear trend. The variance
of estimation is low across the range of the data but the estimate does not represent the
underlying features of the data set well. The mean log SO2 is overestimated at the start
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and end of the period and there are two periods (1991–1992 and 1996–1998) when it is
underestimated, so it has high bias. A lower bandwidth gives a slowly varying curve more
representative of the general shape in the data, while a very small bandwidth gives an
estimate that follows the data very closely, and so has small bias, but has higher variance
as the predicted values are based on smaller numbers of data values at any point in time.
However, this estimate also shows that there are seasonal effects that should be explicitly
modelled and it also raises the question of whether these seasonal effects are the same
every year.
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Figure 7.2 Smooth estimates of mean ln(SO2) over time, using the local linear approach.
The full, dashed and dashed–dotted lines correspond to estimates constructed with smooth-
ing parameters h = 0.1, 1, 10 respectively.

Covariates that are defined on a cyclical scale, referring, for example, to seasonal infor-
mation, require a different treatment. As the smooth estimate at any point is a weighted
average of the values of the explanatory variable in the neighbourhood, a cyclical pattern
of weights can be used to reflect the annual seasonal effect. Since linear regression is not
an appropriate model on a cyclical scale, a local mean estimator can be formed from

min
α

n∑
i=1

{yi − α}2w(xi − x;h), (7.6)

where the weight function is now defined using a von Mises density as described in
Section 4.2. For the weekly data considered here, the length of the seasonal cycle in
the von Mises density was set to 53 weeks. The bandwidth h again sets the degree of
smoothing applied to the data, with large h allowing influence from observations across
a wide range while small values of h restrict attention only on those observations that lie
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close to the point of estimation. Loader (1999) describes an alternative approach based
on a suitably scaled sine function. The cyclical pattern can be adjusted in various ways,
most flexibly by introducing a bivariate term for year and week simultaneously, therefore
allowing interaction between them.

These forms of smoothing are based on weighted least squares criteria and so the
resulting estimates can be expressed as linear combinations of the elements of the vector
of response data y. It is convenient to define a smoothing matrix S whose rows contain the
weights that are appropriate for particular estimation points on the scale of the covariate.
The vector of estimated values m̂ at these points then has the convenient representation
m̂ = Sy. This is particularly useful for the construction of standard errors and methods
of model comparison.

7.2.3 Smoothing correlated data

When the errors are correlated with joint distribution N(0, σ 2R), it is useful to consider
the Choleski decomposition for the correlation matrix, R = LL′. Writing � = L−1 as in
Section 3.3.3, this leads to a local least squares criterion, which incorporates the correlation
structure directly as

(y − α1n − Xβ)′�′W�(y − α1n − Xβ). (7.7)

Here, X denotes a vector with ith element (xi − x), 1n is a vector of n ones and the
matrix W has diagonal elements w(xi − x;h) with zeros elsewhere.

In solving the criterion (7.2) for the standard local linear estimator, an explicit solution
can be derived. The details are given by Wand and Jones (1995), Bowman and Azzalini
(1997) and other authors. In a similar manner, an explicit expression for the case of
correlated errors can be derived for the value of α̂ in the minimisation of (7.7): m̂(x) =∑n

i=1 ai(x)yi , where

ai(x) =

(
n∑
l,j

γliγljwl

)(
n∑

l,g,j

γlgγljwlxgxj

)
−

(
n∑
l,j

γliγljwlxj

)(
n∑

l,g,j

γlgγljwlxj

)

(
n∑

l,g,j

γlgγljwl

)(
n∑

l,g,j

γlgγljwlxgxj

)
−

(
n∑

l,g,j

γlgγljwlxj

)2 .

(7.8)

Here, γlj indicates the (l, j)th element of � and wj = w(x − xj ; h). This reduces to the
appropriate expression in the case of independent errors. The local mean estimator is a
special case of the local linear estimator, and its explicit representation follows as

m̂(x) =
n∑

i=1

{ ∑
j,l γjiγjlwj∑

g,j,l γjgγjlwj

}
yi .

Local linear regression smoothing can easily be extended to the case of two covariates.
With independent errors, the estimate can be defined as the least squares solution α̂ in
the problem

min
α,β1,β2

n∑
i=1

{[
yi − α − β1(xi1 − x1) − β2(xi2 − x2)

]2

× w(xi1 − x1; h1)w(xi2 − x2;h2)
}
. (7.9)
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With correlated data, formulation (7.7) applies with X denoting a matrix whose ith row
is (xi1 − x1, xi2 − x2) and β denotes the vector (β1, β2)

′. An explicit solution for α̂ is
again available by performing the detailed algebra, along the lines described by Bowman
and Azzalini (2003) in the independent case.

In all cases, the vector of fitted values at a set of estimation points of interest continues
to have the vector–matrix representation m̂ = Sy. However, S now involves the elements
of the correlation matrix R as well as the weights wj and the covariate values xi . For
consistency with Section 4.2.2, the development below focuses on the situation when
the estimation points of interest are the observed covariate values. The corresponding S

matrix is denoted by S̃: thus S̃y is the vector of fitted values corresponding to the available
observations. For a summary of differences that may arise when considering alternative
sets of evaluation points, see Section 4.2.2.

7.2.4 Fitting additive models

Univariate and bivariate smoothing procedures can be used as building blocks in the
estimation of individual components of the additive model (7.1). The standard approach
employs the backfitting algorithm, which iteratively applies smoothing with respect to
each covariate, using as response the residuals based on the other model components.
The details are described by Hastie and Tibshirani (1990) but the heart of the process is
expressed in the iterative scheme

m̂(l)
j = (In − P 0) S∗

j

⎛
⎝y − μ̂ −

j∑
k<j

m̂(l)
k −

p∑
k > j

m̂(l−1)
k

⎞
⎠ (j = 1, . . . , p) (7.10)

where m̂(l)
j indicates the estimate of component j at iteration l, I n represents the identity

matrix of order n, P 0 is the n × n matrix filled with the value 1/n and S∗
j denotes the

fundamental smoothing matrix associated with this component, as defined in the section
above on single components. To ensure unique definitions of the estimators, the intercept
term is held at μ̂ = ȳ1n, where ȳ is the sample mean, and the estimator is premultiplied
by the factor (I n − P 0) at each step to ensure that

∑
i m̂

(l)
j (xij ) = 0; this works because

for any n × 1 vector x, P 0x is a vector filled with the mean of the elements of x. The
initial values of m̂j can be set to 0 and the process continues until convergence.

For a variety of reasons, such as the calculation of standard errors and the implementa-
tion of model comparison tests, it is very useful to have available the projection matrices
that create the final estimates of the additive components, after convergence. Explicit
expressions can be derived for the case of two components. More generally, Hastie and
Tibshirani (1990) explain how the projection matrices can be recovered retrospectively
by repeated use of indicator variables. However, it is straightforward simply to keep track
of the relevant matrices as the iterations proceed. If S̃

(l)

j denotes the matrix producing the

current estimate of component m(l)
j as m̂(l)

j = S̃
(l)

j y, then the backfitting scheme (7.10)
can be expressed as

S̃
(l)

j = (In − P 0)S
∗
j

⎛
⎝I n −

∑
k<j

S̃
(l)

k −
∑
k > j

S̃
(l−1)

k

⎞
⎠ . (7.11)

The recursions start with {S̃(0)

j : j = 1, . . . p} defined as T × T matrices of zeros. At each

stage, the updated projection matrix S̃
(l)

j remains independent of the data y. The result after
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convergence is a set of projection matrices {S̃j ; j = 1, . . . , p} that create the estimates
of the individual components and the fitted values as ŷ = S̃y, where S̃ = ∑n

j=0 S̃j .
The connection between (7.10) and (7.11) should be clear, except that the final brack-

eted component of (7.11) contains no term corresponding to subtraction of the sample
mean μ̂ = ȳ1n. This is because for all the smoothers considered here, the rows of the
smoothing matrices sum to 1 (i.e. each smoothed value is a weighted average of the
observations) so that S∗

j 1n = 1n, whence

(I T − P 0)S∗
j μ̂ = ȳ (I T − P 0) 1n = ȳ (1n − 1n) = 0.

Thus the subtraction in (7.10) is not strictly necessary; it is included there merely because
most treatments of the backfitting algorithm suggest subtracting the sample mean as a
first step.

In the discussion above it has been assumed that the correlation matrix R is known.
In practice, it will often be required to estimate this. As in the case with linear models, an
effective strategy is to fit an independence model and use the residuals from this to identify
a suitable structure for the error component. This follows the approach of Niu (1996).

However, there is an intrinsic difficulty here in separating systematic trend from fluctu-
ations due to correlation, when the data consist of a single series. The degree of smoothing
used in the estimation of trend sets the balance between these two effects. There are sug-
gested methods of bandwidth choice, such as that of Francisco-Fernández and Opsomer
(2005), which aim to incorporate the presence of correlation into the selection process.
However, these cannot provide a robust and reliable solution under all circumstances.
The approach adopted here is based on judgement of the smoothness of trend expected,
expressed through the concept of approximate degrees of freedom, as discussed below.
The sensitivity of results to these judgements is also explored. An alternative is to base
the choice on the frequency considerations discussed in Chapter 2, using the squared gain
functions for the filter weights.

An additional issue arises as a result of the bias that is inevitably present in the
estimation of the regression function. This bias will be transferred to the residuals, lead-
ing to inflated residual autocorrelations at short time lags. This is most easily seen by
considering the residuals ri = yi − m̂(xi), where m̂(xi) denotes the fitted additive model
μ̂ + ∑

j m̂j (xij ), evaluated at the ith observation. Estimates of correlation are derived
from products of the form rirj , which has mean value with principal terms E{εiεj } + bibj ,
where bi denotes the bias m(xi) − E{m̂(xi)}. Since the bias is smooth in the covariates,
then bi and bj will have the same sign where observations i and j are close. Where
the covariates are themselves time related, this therefore inflates the estimates of corre-
lation. However, the effect is therefore a conservative one, leading to a more cautious
interpretation of the regression components in the fitted model.

With the SO2 data, an additive model was fitted using the smoothing parameters
h1 = 0.7 for years and h2 = 0.3 for seasonality. These values were chosen to reflect
the substantial degrees of smoothness expected in the trend and seasonal curves. Hastie
and Tibshirani (1990) use an analogy with linear models to describe the concept of
approximate degrees of freedom in the context of smoothing techniques. For the j th
smooth component this can be easily calculated as tr(S̃j ), where S̃j is the corresponding
projection matrix as described above (see also Sections 4.1.4 and 4.2). The chosen values
for h1 and h2 correspond to approximately 8 and 4 degrees of freedom. This allows
substantial flexibility in the estimate of trend across the years, as this is of particular
interest, and modest flexibility for the seasonal effect.
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The residuals from this independent additive model were used to construct an
autocorrelation function and this showed that a simple AR(1) process provides a good
description for the error terms. As in most applications, principal interest lies in the
mean structure and so it is sufficient to adopt a simple model for the errors, which
allows the principal effects of correlation to be incorporated without undue complexity.
Where there is strong evidence that more complex time series models are required,
these can be adopted without difficulty, as long as the appropriate matrix inversions are
feasible. For the SO2 data monitored at Kosetice, the estimated correlation parameter,
using the residuals from the independence model, is ρ̂ = 0.366, indicating a modest
degree of correlation. An estimate of the correlation matrix R is then available by
setting the (i, j)th entry to ρ̂|i−j |. Niu (1996) proposes iteration between estimation of
the mean function using the current estimation of the correlation structure and estimation
of the error structure for the current residuals. In the work described in this chapter
a simple one-step approach was adopted, mirroring common practice with generalised
least squares for linear models. With an AR(1) model, as described in Section 3.3.3, an
explicit form is available for the matrix � in the modified local least squares criterion
(7.7); this can be used to reduce the computational complexity.

Figure 7.3 illustrates the estimated components of the additive model which expresses
the trend and seasonal effects on SO2 simultaneously. The steady decline over the years
and the marked seasonal pattern are both clear. The estimates shown were obtained
using the independent-data criterion expressed in (7.2), rather than the correlation-adjusted
method described in (7.7) and (7.8). Estimates obtained using the correlation-adjusted
method were very similar to those shown. This corresponds to the ability of ordinary
least squares procedures in linear models with correlated data to produce valid, if not
fully efficient, estimators (see Section 3.1.1).

1990 1992 1994 1996 1998 2000

−2
.0 −0

.4
−0

.2

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

Year

5(
Y

ea
r)

0 10 20 30 40 50

0.
0

0.
2

0.
4

Week

5(
W

ee
k)

Figure 7.3 Fitted additive model for the ln(SO2) data. The left- and right-hand panels
show the estimated components for the trend over years and and the seasonal effect of
weeks respectively. The dashed lines identify a distance of two standard errors from the
estimate, based on an assumption of AR(1) errors.

However, it is also important to indicate the variability associated with these
estimates through their standard errors and here it becomes important to incorporate the
underlying correlation appropriately. An assessment of variability can easily be derived
from the representation of the component estimates as m̂j = S̃j y through the expression
Var(m̂j ) = S̃jRS̃

′
j σ

2. An estimate of σ 2 can be constructed from the dependence-adjusted
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residual sum of squares, which can be written as y′V y, where V = (I − S̃)′R−1(I − S̃).
This has mean value E{y′V y} = E{ε′V ε} + m′(I − S̃)′R−1(I − S̃)m = tr{RV }σ 2 +
b′R−1b, where b denotes the vector of bias terms at the observed data points. This
therefore leads to an estimate of σ 2 as

σ̂ 2 = y′V y
tr{RV } .

Since this has mean value σ 2 + b′R−1b/tr{RV }, the effect of bias again has a
conservative effect by inflating the estimate of σ 2.

Following the terminology of Hastie and Tibshirani (1990), the normalising constant
tr{RV } is referred to as the approximate degrees of freedom for error . The corresponding
approximate degrees of freedom for the model is ν = n − tr{RV }. When R is replaced by
the identity matrix this reduces to one of the standard definitions of approximate degrees
of freedom described by Hastie and Tibshirani (1990) in the independent errors case.

Estimated standard errors for the model component m̂j = S̃j y are then available as the
square root of the diagonal entries of the matrix S̃jRS̃

′
j σ̂

2. The dashed lines in Figure 7.3
illustrate a band corresponding to ±2 estimated standard errors around the estimate. The
high precision of estimation is apparent. However, it is of interest to consider the effect of
failing to incorporate the correlation structure in the estimation process. This can easily be
done by replacing the matrix R in the expression above by the identity matrix. This leads
to a reduction in standard errors of around 25 % over those that incorporate the correlation
structure. This marked effect indicates the importance of adopting a model that properly
incorporates correlated errors and therefore gives a more realistic assessment of precision
in estimation.

7.2.5 Comparing nonparametric models

An essential part of using additive models is the ability to compare different candidate
models and hence to assess the evidence for the retention or omission of particular com-
ponents. Some terms may also be well described by parametric rather than nonparametric
forms. Hastie and Tibshirani (1990) advocated the use of an F statistic, analogous to the
standard procedure for linear models. Specifically, evidence against the null hypothesis
that the data were generated by a model M0, as opposed to the larger model M1, is
contained in the test statistic

F = (RSS0 − RSS1)/(ν0 − ν1)

RSS1/ν1
, (7.12)

constructed from the residual sum of squares (RSS) and approximate degrees of freedom
for error (ν) of the two models. Hastie and Tibshirani (1990) proposed that this statistic
should be compared to an F distribution with ν0 − ν1 and ν1 degrees of freedom, again
by analogy with linear models. The presence of bias in the residual sum of squares and
the absence of the required properties in the underlying projection matrices mean that the
test statistic will not follow an F distribution under the null hypothesis, M0. However,
this distribution does provide a helpful benchmark.

When dealing with correlated data, the dependence-adjusted residual sum of squares
can be expressed as RSS = y′V y, where V denotes the matrix (I − S̃)′R−1(I − S̃).
This can be conveniently extended here to express the residual sum of squares for mod-
els M0 and M1 as RSSk = y′V ky, for the models indexed by k = 0, 1. It follows that
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E{RSS0 − RSS1} = E{ε′(V 0 − V 1)ε} + b′
0R

−1b0 − b′
1R

−1b1, where b0 and b1 denote
the bias vectors under the two models. It is very difficult to derive explicit expressions
for the two bias terms, although Opsomer (2000) derived recursive expressions. The guid-
ing principle that bias is controlled by curvature and the parameters h2 and σ 2 remains
true, but the situation is complicated by the interactions between the covariates as the
backfitting algorithm progresses. However, in order to ensure that the bias terms cancel
one another out as far as possible, it is clear that the same smoothing parameters should
be used when fitting both models.

As discussed in Section 4.1.7, an alternative approach to the distributional calculations
arises by expressing the F statistic in terms of quadratic forms as

F = y′Ay/y′By,

where A is the matrix (V 0 − V 1)/(ν1 − ν0) and B is the matrix V 1/(n − ν1). The sig-
nificance of the statistic F can then be expressed through its p-value, as

p = P

{
y′Ay
y′By

>Fobs

}
= P {y′Cy > 0},

where Fobs denotes the value calculated from the observed data and C is the matrix
given by (A − FobsB). In Section 4.1.7 it was shown that in the absence of bias the
quantity y′Cy reduces to e′Ce. Following the discussion on bias cancellation above, the
same replacement can be made as an approximation in the present setting. Johnson and
Kotz (1972) summarise general results about the distribution of a quadratic form in nor-
mal variables. Specifically, the j th cumulant of the distribution of ε′Cε is available as
2j−1(j − 1)!tr{(V C)j }. This allows the moments to be calculated and matched to a con-
venient distributional approximation, such as a shifted and scaled chi-squared distribution,
a + bχ2

c . Bowman and Azzalini (1997) give all the details of this process.

7.3 Models for the SO2 data

The SO2 data from Kosetice which are analysed in this section are available on the
web at www.emep.int. Meteorological data that were also available at the same
station were hourly values of precipitation, temperature, humidity, wind speed and wind
direction. These variables have been aggregated to the weekly scale, as described in
Section 7.1. The wind information was combined into a mean direction, weighted by
speed, to reflect the dominant direction of air flow. As a result of the skewness of SO2

and rainfall, these variables were analysed on a log scale. As in the case of SO2, a small
constant was added to rainfall before the application of the log transformation, in order
to accommodate zero values.

In broad terms, the reduction of SO2 concentrations across many areas of Europe
since 1980 is primarily linked to a decline in emissions, but changes in weather patterns
also affect concentrations and are a confounding factor in the analysis. For example,
an increasing frequency of westerly winds bringing relatively clean air from the Atlantic
across Europe would reduce the average observed SO2 concentration at many sites. There-
fore, to evaluate the effectiveness of government policies on reductions of emissions or
to estimate the possible future effects of climate change, it is important to identify these
meteorological effects. Two specific questions of interest are identified for this case study:
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(a) Does meteorology explain some of the variability of SO2?

(b) Has the seasonal pattern of SO2 changed over the years?

In order to answer question (a), the following two nested additive models were fitted:

Model 1 : log(SO2) = μ + my(year) + mw(week) + ε,

Model 2 : log(SO2) = μ + my(year) + mw(week) + mr(rain)

+mt(temp) + mh(hum) + ma(air) + ε.

Both models present the trend (‘year’, including weeks on a decimal scale) and the
seasonality (‘week’, as week of the year), but model 2 also includes the meteorological
variables. Therefore comparisons of these two models will allow a significant effect of
meteorological variables to be identified.

The fit of each component of model 2 is shown in Figure 7.4, using the smoothing
parameters equivalent to approximately 8 degrees of freedom for years and approximately
4 degrees of freedom for each of the other terms. The full lines show the estimates of the
components of the additive model. The dashed lines identify a distance of two standard
errors from the estimates.

Figure 7.5 shows the fitted values of the models as a function of time. Model 2 captures
many more of the high concentration events than model 1 is able to fit. This is an indication
that the peaks are mainly due to the meteorological effects. However, it would be useful to
have a formal comparison of the models, to weigh the evidence more effectively. This was
done using both approximate F and quadratic form tests, producing a p value lower than
0.001 in both cases. This gives clear evidence that, at Kosetice, meteorological variables
give significant extra information in explaining the variability of SO2.

Some of the panels in Figure 7.4 also raise the issue of whether the covariate effects
may be linear rather than nonparametric in nature. For example, the trend with time may
be linear, allowing a much simpler model structure to describe the changes. The adoption
of a linear effect for one or more of the terms in model 2 creates a semiparametric
model. The estimation process for models of this type has been thoroughly discussed
by Hastie and Tibshirani (1990), Green and Silverman (1994) and other authors. In the
present context, semiparametric models can be fitted simply by replacing the smoothing
matrices for the appropriate terms by the usual matrix expressions for the fitted values in a
linear regression. The model comparison methods follow immediately, using the projection
matrix S̃ produced by the backfitting algorithm. When model 2 is compared with the
restricted models that constrain each term in turn to be linear, all the nonparametric terms
are found to be highly significant, with the exception of rain, where the p-value for a
nonparametric effect is 0.379. Indeed, if rain is omitted altogether, the p-value is 0.134,
suggesting that, given the information provided by the other meteorological variables,
there is little to be gained by including rain.

In order to assess whether there has been a significant change in seasonality across
years, model 3 includes the same meteorological variables as model 2, but with an addi-
tional bivariate term to describe the interaction between trend and the seasonality:

Model 3 : log(SO2) = μ + myw(years, weeks) + mr(rain)

+mt(temp) + mh(hum) + ma(air) + ε.
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Figure 7.4 The estimated components of an additive model for the log SO2 data at Koset-
ice, adding meteorological information to the earlier model based on year and week.

In model 2, the seasonality is assumed constant across years, while with model 3 the shape
of the seasonal term changes with year, as shown in Figure 7.6. A nonparametric term
for rain is retained here. However, the results described below are essentially unchanged
if rain is omitted.

A comparison of models 2 and 3 in a hypothesis test produces the p values 0.003 and
< 0.001, using the F distribution and quadratic form calculations respectively. There is
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between year and week, through a bivariate surface.

therefore a strong indication that, at Kosetice, the seasonality of log(SO2) changes across
the years. This is consistent with the shape of the estimate of the bivariate component
shown in Figure 7.6, where there seem to be differences in the patterns of decline in
summer and winter.

It can therefore be concluded that at Kosetice the meteorology has a significant effect
in explaining the variability of the SO2 and that the nature of the seasonal effect changes
from 1989 to 2000.
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7.4 Conclusions

Techniques for fitting and testing additive models with correlated data have been described.
Although the backfitting algorithm in its usual form, designed for independent data, can
be applied to good effect, it is important to incorporate a suitable correlation structure
into subsequent analysis. This places the results on a firmer methodological footing and
gives confidence in the conclusions reached. In particular, it provides a more realistic
assessment of the variability of the estimates and a more accurate method of model
comparison through the distributional calculations involving the F statistic.

The selection of a suitable smoothing parameter is an important issue in nonparametric
regression, although Bowman and Azzalini (1997) point out that the sensitivity of this
choice is often less in issues of inference than in estimation. When the response data are
correlated, the choice of smoothing parameter has the effect of setting the balance between
the patterns in the data that are attributed to trend in the mean and those attributed to
correlated errors. In the application discussed in this chapter, the smoothing parameters
have been selected through judgement based on background knowledge of the nature of
the trends and correlations to be expected in this setting. The concept of approximate
degrees of freedom also provides a very useful and interpretable scale on which choices
can be expressed.

As discussed earlier, it would be wise to check whether the qualitative results are
sensitive to the degree of smoothing used. The test to compare models 1 and 2 was
applied using 3, 4 and 6 degrees of freedom, which represents quite a wide range. In each
case, the degrees of freedom for the trend over the years was doubled, to match the pattern
used earlier in the paper. The p-values were all less than 0.001, which confirms that the
evidence for the explanatory power of the meteorological information is very strong at all
levels of smoothing. The test for the effect of rainfall was also repeated at these different
degrees of smoothing, producing p-values of 0.120, 0.135 and 0.052 respectively. Again,
these consistently indicate a lack of convincing evidence for the effect of rainfall. Finally,
models 2 and 3 were also compared at the same levels of smoothing, producing p-values
of 0.194, 0.003 and < 0.001 respectively. On this occasion, the evidence for interaction
disappears when a very large degree of smoothing is applied. However, a reasonable
interpretation is simply that the estimate is constrained to lie relatively close to a linear
model, which lacks sufficient flexibility to express the interaction structure.

The analysis of trends in pollutants is an important environmental problem, both as
a driver of policy and as a test of the success or failure of environmental initiatives.
Weather is always important, as changes in the climate (both long term and from year
to year) can change (a) the amount of pollutant emitted, (b) the transport of pollutant
across the landscape and (c) the chemistry and other factors in the atmosphere that deter-
mine the fate of the pollutant. For example, recent warm summers have increased the
energy requirements to run air conditioning, hot stationary air masses increase ozone and
particulate production in the lower atmosphere from chemical reactions, and with less
wind dispersal concentrations increase in the source regions and decline in remote areas.
When SO2 concentrations were very high over Europe in the 1980s, periods of sustained
westerly winds from the Atlantic would significantly reduce concentrations in Western
Europe. The methods described in this chapter allow a much more flexible approach to
analysis of pollutant trends than has often been used in the past. There is a flexible fitting
of seasonal components, meteorology can be explicitly modelled when data are available,
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adjustments for correlated data can be included directly in the modelling and the data can
determine the shape of the trend.
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8.1 Motivation

The southwest of Western Australia (SWA) has been in a state of hydrological drought
since the mid 1970s (Bates et al., 2008; Power, Sadler and Nicholls, 2005). This has
major implications for the management of water resources in the region, as exemplified
by Figure 8.1(a), which shows total annual volumes of water entering 11 reservoirs to
the east of the city of Perth. These reservoirs provide 25–45 % of the water for the
region’s Integrated Water Supply Scheme (IWSS), which caters for 84 % of the 1.9 million
population of the state of Western Australia. The series shows a clear downward trend
since the 1960s. As a result, despite the extensive use of demand management strategies,
the region’s water supply infrastructure has required substantial investment in recent
decades (Bates and Hughes, 2009). For example, the state Water Corporation spent almost
$A1 billion in source development between 1996 and 2006; a new seawater desalination
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Figure 8.1 (a) Total combined annual flows into the IWSS dams, 1911–2007. The verti-
cal axis is on a log scale. The dashed line is a trend estimate obtained using local linear
regression with a Gaussian kernel and a bandwidth of h = 8 years. (b) Map of study area,
with locations of stations supplying daily rainfall data used in this study (stations are num-
bered following Charles et al., 2007). Data from station 8 were subsequently discarded (see
Section 8.3). Hatching shows the area used for basis function representation of regional
variation (see Section 8.4); inset shows location of main map within Australia.

plant started operation in November 2006 and a further desalination plant is due for
completion in 2011.

Against this background, it is of interest both to characterise the trend in reservoir
inflows and to understand the reasons for it. Until recently, this trend was often seen
to consist of periods of roughly constant levels separated by abrupt breaks, notably in
1975 (for example, Hennessy et al., 2007, Section 11.6). However, using the test for
discontinuities in an otherwise smooth regression function developed by Bowman, Pope
and Ismail (2006), Bates et al. (2010) show that the series is in fact better described by a
smooth trend such as that shown in Figure 8.1(a). This has major implications for water
resource management in the region: under the ‘abrupt breaks’ scenario, inflows would
be expected to fluctuate around their current level in the short to medium term, whereas
under the ‘smooth trend’ scenario a continued decline is likely.

The most obvious potential cause of reduced reservoir inflows is a corresponding
decline in the region’s rainfall. However, this is not the only possible explanation: changes
in forest management and land use (including open-cast bauxite mining) may also be
partly responsible since these can affect both runoff processes and groundwater recharge.
Research suggests that increases in stream yields follow the temporary removal of vege-
tation during mining and decreases follow mine restoration (e.g. Croton and Reed, 2007),
although the net contribution of such effects to the decline in inflows is a matter of
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some controversy. Unfortunately, to resolve this would require extensive modelling of
surface and subsurface hydrology, and the hydrogeological data needed to support such
an exercise are not available. It is nonetheless possible to examine climate data from the
region, to obtain at least a partial understanding of climatic factors that may be driving the
change in inflows. Bates et al. (2010) reported the results of such an exercise, in which
changes in precipitation were related to changes in regional atmospheric circulation. The
aim of that paper was to summarise a suite of analyses linking the inflow series indirectly
to large-scale climatic changes; as such, the details of each individual analysis were nec-
essarily brief. The present contribution gives a more complete description of precipitation
trends in the region.

To place the ensuing analysis in context it is helpful to understand the topography,
climatology and human geography of the region; relevant aspects are summarised in the
next section. Section 8.3 gives details of the data used in the study, along with quality
checks carried out to ensure that the modelled trends were free of artefacts. Sections 8.4
and 8.5 describe the methodology and results respectively; and conclusions are given
in Section 8.6.

8.2 The study region

The study region is an area of roughly 100 × 150 km2, lying to the south and east of Perth
in SWA, as shown in Figure 8.1(b). The Darling Range, an escarpment 320 km in length
and with an average height of around 300 m, runs parallel to the coast at a distance of
25–50 km. The IWSS catchments are all located in the Darling Range, with the reservoirs
at or near its west-facing scarp slope. The human population is concentrated on the coastal
plain in the west; to the east lies Western Australia’s ‘wheat belt’, with large but scattered
farms and few centres of population.

SWA experiences a Mediterranean climate, with hot dry summers (December to Febru-
ary) due to the influence of the subtropical belt of high pressure. In winter, this belt moves
northwards and airflow is predominantly westerly; this brings in moisture from the Indian
Ocean. Thus, most of the annual precipitation (typically in excess of 70 % – see Bates
et al., 2010) falls between May and October. Previous studies (for example, Bates et al.,
2008, IOCI, 2002) suggest that substantial precipitation declines have occurred during
early winter (May to July): for example, over the period 1975–2004 the mean region-
ally averaged rainfall for these months was reduced by 14 % compared with the previous
70 years.

The eastward movement of moist air from the Indian Ocean results in a west–east
rainfall gradient over the region, which is exaggerated by the rain shadow effect of
the Darling Range. Rainfall also decreases from south to north, reflecting the transition
between subtropical weather systems to the north and low-pressure, mid-latitude systems
to the south; see, for example, Bates et al. (2008, Figure 3).

8.3 Data used in the study

Previous studies of precipitation in SWA (for example, Charles et al., 2007) have used
daily rainfall data from a network of 31 measuring stations, 12 of which fall within
the study area indicated in Figure 8.1(b). Data from these 12 stations, obtained from
the Bureau of Meteorology and from the Department of Water, Western Australia, were
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initially considered for this analysis. The station locations are indicated by numbers in
Figure 8.1(b); the numbering is the same as in the reference above. There are few stations
in the east of the study area, due to its being thinly populated: this makes it difficult to
characterise precipitation trends reliably in this eastern region.

Data for the winter half-year only (May–October) have been considered, because
these months contribute most of the region’s rainfall and have been associated with
precipitation declines as noted above. This gives a total of 184 days’ data each year.
All available winter data for the period 1958–2007 have been used, although not all
stations were operational throughout this period and most had some missing observations
(see Table 8.1).

Table 8.1 Details of records used for precipitation trend analysis. All records start in
1958 and end in 2007 except stations 30 (start 1972, end 1999) and 31 (start 1974, end
2002). ‘Long.’, ‘Lat.’ and ‘Alt.’ denote longitude, latitude and altitude respectively.
Italicised values are ‘effective altitudes’ used in the modelling (see Section 8.4) and
‘% missing’ denotes the percentage of missing days during the years of observation.

Station Long. (◦E) Lat. (◦S) Alt. (100 m) % missing

5 115.97 31.93 0.20 0.0 0
6 116.07 32.33 2.40 3.0 10
7 116.17 31.97 3.00 3.0 2
8 116.00 32.37 0.32 1.5 37
9 116.07 32.20 2.50 3.0 6
15 115.82 33.57 0.63 1.0 1
16 116.05 32.72 2.67 2.5 1
19 116.17 33.37 1.90 2.0 17
20 115.88 33.13 1.16 1.0 5
26 116.73 33.33 2.62 2.5 2
30 116.08 32.98 2.80 3.5 3
31 115.97 33.40 1.40 2.0 4

Location details (latitude and longitude) were available for each station. Station alti-
tudes were also available for 10 of the 12 stations; approximate altitudes were read from
maps for stations 30 and 31.

The data from most stations are recorded to a nominal resolution of 0.1 mm. However,
inspection reveals a strong preference for even-numbered decimal digits except at stations
30 and 31 where, for most years in the record, the observations are given to two decimal
places. Apart from these two stations, the tendency to record even digits does not seem
to be systematic (it does not occur predominantly in some years or at some stations,
for example). In other studies (for example Yang et al., 2006) it has been found that
differences in recording resolution can lead to spurious structures that are detectable by
the methods used below. To avoid this, therefore, all data were rounded to a resolution
of 0.2 mm prior to analysis.

An initial analysis revealed further problems associated with changes in recording
practice at weekends. These are exemplified by Figure 8.2, which compares the distri-
butions of rainfall recorded at station 20 from 2001 onwards with those recorded prior
to this date. The distributions of cube-rooted rainfall amounts are shown for each day of
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Figure 8.2 Distributions of cube-rooted daily rainfall recorded at station 20 on each day
of the week (a) from 2001–2007, (b) prior to 2001.

the week: the cube-root transformation compresses the upper tail of the distribution, so
that the structure in the remaining part is more clearly visible. The figure shows that the
majority of post-2000 weekend readings are zero, whereas this was not the case in earlier
years. This is clearly an artefact of the data collection mechanism rather than a genuine
feature of the precipitation. In fact, many weekend readings are missing from this station
from 2001 onwards. We conjecture that since late 2000, the gauge has rarely been read
at weekends and that the observer has adopted a practice of recording zeros when the
gauge is empty on a Monday morning, but missing values otherwise (since in this case it
is not possible to determine when the rain fell). The effect is to underreport the number
of wet days at this station in the latter part of the record, and hence to exaggerate any
drying trends.

Similar problems have been identified at some other stations. These have all been
referred back to documentation held by the Bureau of Meteorology. Unfortunately, this
documentation is often sparse, but in a few cases there was confirmation that, for example,
weekend monitoring of a station had ceased on a particular date. To avoid bias in our trend
assessments, therefore, all suspect observations (including those, such as at station 20,
where there is evidence of selective reporting) have been discarded from the subsequent
analyses. Table 8.2 gives a summary. A comparison with Table 8.1 shows that the high
percentages of missing data at stations 6 and 19 are largely associated with selective
reporting of zeros as at station 20. Station 8 did not display such clear evidence of selective
reporting. However, the extremely high percentage (37 %) of missing observations here,
without any supporting documentation, casts doubt on the quality of the entire record,
which therefore has not been considered further. The analysis below is based on data
from the 11 remaining stations: there are roughly 92 000 observations in total.
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Table 8.2 Rainfall observations discarded from the trend analysis.

Station Obs. discarded Reason

6 All Sunday observations,
1969–1985

Selective reporting of zeros on Sundays. There
are also occasional problems with Sunday
readings outside the 1969–1985 period, but
there are sufficiently few of these not to
affect the analysis to any appreciable degree

8 All High proportion of missing observations
throughout, leading to suspicions of
operational difficulties or selective reporting
and casting doubt on the quality of the
available data

16 All observations from
1964 to 1973

Differences between observer practice at
weekends and on weekdays. Weekday
observations are recorded to a coarser
resolution than weekends, and the
proportion of recorded wet days in particular
is lower on weekdays than at weekends.
Weekend observations are consistent with
those from other stations, and with
post-1973 observations from this station

19 All weekend observations,
1975 onwards

Selective reporting of zeros at weekends

20 All weekend observations,
2001 onwards

Selective reporting of zeros at weekends
(see Figure 8.2)

26 All weekend observations,
2001 onwards

Selective reporting of zeros at weekends

Apart from specific problems relating to this particular data set, daily precipitation data
often exhibit apparent spatial inconsistencies as a result of variation in observer practice at
different stations (see, for example, Yang et al., 2006). These inconsistencies are typically
associated primarily with the treatment of very small rainfall amounts and, to reduce the
effect of this, it is common to threshold the data prior to analysis. Specifically, if y∗

st

denotes the recorded precipitation at station s on day t , then the thresholded observation
is defined as

yst = max
(
y∗

st − τ, 0
)

for some small threshold τ > 0. Previous authors (for example Charles, Bates and Hughes,
1999; Charles et al., 1999) have used a threshold of τ = 0.3 mm for the data used here.
For the present study, a threshold of 0.25 mm has been used: since the data are rounded
to a resolution of 0.2 mm, exactly the same days will be classified as dry or wet after
thresholding as in previous work.
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8.4 Modelling methodology

In the analysis below we fit statistical models simultaneously to data from the remaining
11 stations, and use these models to infer the nature and extent of trends in both rainfall
occurrence and intensity. Daily rainfall data are usually highly variable, so that weak
signals can be difficult to detect in individual records by conventional standards of statis-
tical significance. Fitting simultaneously to data from all stations is one way to overcome
this, since the evidence for a signal is strengthened if it is present in several independent
series. Of course, since the stations are located in a relatively small geographical area,
on any given day the observations from different stations are unlikely to be independent
and this must be accounted for in the analysis. However, unless all the records are com-
pletely interdependent, extra information can always be gained by simultaneous fitting
(see Section 6.1).

8.4.1 Generalised linear models for daily rainfall

Our analysis is based on generalised linear models (GLMs), which were introduced in
Section 3.5. GLMs were first used to analyse individual daily rainfall time series by Coe
and Stern (1982) and Stern and Coe (1984), and more recently by Fealy and Sweeney
(2007) and Furrer and Katz (2007). For more flexible representation of structure, gener-
alised additive models (GAMs; see Section 4.2) have also been used; see Hyndman and
Grunwald (2000), Beckmann and Buishand (2002) and Underwood (2009). Chandler and
Wheater (2002) considered the use of GLMs for simultaneous modelling of rainfall data
from multiple locations; the analysis below follows similar lines, but also incorporates
more recent developments.

In most applications of GLMs to daily rainfall, two separate models are used: logistic
regression to model the probability of rainfall occurrence and gamma distributions to
model the amount of rain if nonzero. Logistic regression specifies the probability πst of
rain at station s on day t via the relationship

log

(
πst

1 − πst

)
= β0 +

p∑
j=1

βjx
(j)
st , (8.1)

where xst =
(
x

(1)
st x

(2)
st · · · x(p)

st

)′
is a covariate vector and β0, β1, . . . , βp are coefficients to

be estimated. Subsequently, if station s experiences rain on day t then the rainfall amount
is taken to have a gamma distribution with mean μst , where

log μst = γ0 +
q∑

j=1

γj ξ
(j)
st (8.2)

for covariate vector ξ st =
(
ξ

(1)
st ξ

(2)
st · · · ξ (q)

st

)′
and coefficients γ0, γ1, . . . , γq .

Since a gamma distribution has two parameters, (8.2) does not fully specify the
rainfall amounts model: a dispersion parameter is also required (see Section 3.5). As
usual in GLMs, the dispersion parameter is assumed constant for all observations: for a
gamma GLM this means that the gamma distributions have a common shape parameter
or, equivalently, that the coefficient of variation is constant (McCullagh and Nelder, 1989,
Chapter 8). This assumption plays the same role as the assumption of constant variance
in a Gaussian multiple regression.
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8.4.2 Temporal and spatial dependence

GLMs for mutually independent observations are usually fitted using maximum likelihood.
However, in the present application there is likely to be dependence between observations
in both space and time.

Temporal dependence can be handled by including functions of previous days’ rain-
falls as additional covariates in the models; see Section 3.5. Spatial (i.e. interstation)
dependence is more difficult and, in our work, models are fitted as though observations
from different stations are independent. As discussed in Section 6.1, this procedure deliv-
ers valid estimates of the coefficients describing the marginal time series structure at
each station, but the standard errors of the parameter estimates must be adjusted appro-
priately. The required adjustments follow from the theory of estimating functions (see,
for example, Davison, 2003, Section 7.2). This theory deals with very general situations
where a statistical model with parameter vector θ is fitted to data y by solving a set of
equations of the form

U (θ; y) = 0 ,

where the vector U (θ; y) has the same number of elements as θ . For large samples in
regular problems, any estimator defined in this way has approximately a multivariate
normal distribution: the target of the estimation procedure is the mean vector of this
distribution, θ0, say. The covariance matrix of the distribution is H−1V H−1, where
H = E

[
∂U/∂θ | θ =θ 0

]
is the matrix of partial derivatives of U evaluated at θ0 and V

is the covariance matrix of U (θ0; y). In the present setting, denoting by � (θ; y) the
log-likelihood for θ under the (incorrect) assumption that the observations are mutually
independent, the parameter estimates solve ∂�/∂θ = 0; thus the theory of estimating
functions can be applied by setting U (θ; y) = ∂�/∂θ . In this case, the matrix H is given by
H = E

[
∂2�/∂θ∂θ ′], which, apart from a change of sign, is just the expected information

for θ (Section 3.1.6). If the log-likelihood corresponds to the joint density from which
the data were generated, then it can be shown that V = −H = J , say (Davison, 2003,
Section 4.4). In this case, therefore, the asymptotic covariance matrix H−1V H−1 reduces
to J−1, in agreement with the classical theory for maximum likelihood estimation.

To apply this theory, it is necessary to estimate the matrices H (or equivalently J )
and V . J is unaffected by interstation dependence so the usual estimator, Ĵ , say, can
be used; see Section 3.5 for the estimator usually used in GLMs. For V, notice that the
log-likelihood � (θ; y) can be written as a sum of contributions from each time point and
hence U (θ; y) = ∂�/∂θ is also a sum of contributions: U (θ; y) = ∑T

t=1 Ut (θ), say. If
the model accurately reflects the dependence of each observation upon preceding values
(achieved here by including previous days’ rainfalls as covariates) then, under general
conditions, these contributions are uncorrelated (Chandler et al., 2007). Thus

V = Var

[
T∑

t=1

Ut (θ0)

]
=

T∑
t=1

Var [Ut (θ0)] =
T∑

t=1

E
[
Ut (θ0) U′

t (θ0)
]

and the empirical counterpart of this expression can be used to estimate V :

V̂ =
T∑

t=1

Ut

(
θ̂
)

U′
t

(
θ̂
)
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where θ̂ denotes the estimated parameter vector. For GLMs, the quantities
{
Ut

(
θ̂
)}

have
a convenient algebraic form: see Chandler (2005), for example. The covariance matrix of
θ̂ can now be estimated as Ĵ

−1
V̂ Ĵ

−1
, whence standard errors can be obtained.

Although standard errors provide a means of assessing the significance of individual
coefficients in a model, it is often of interest to examine multiple terms simultaneously.
If observations are independent and models are all fitted to the same set of observations
(which may require that fitting is restricted to the subset of observations for which all
potential covariate values are available), this can be done using likelihood ratio tests
as described in Section 3.5.2. Denoting by �1 and �0 the maximised log-likelihoods for
models with and without the terms of interest then, in large samples and under the null
hypothesis that the data were generated from the simpler of the two models, the likelihood
ratio statistic 	 = 2 (�1 − �0) has approximately a chi-squared distribution with degrees
of freedom equal to the number of coefficients being tested. If the observed value of
	 exceeds an appropriate percentage point of this distribution, the null hypothesis can
be rejected.

Once again, however, in the current application it is necessary to consider the impli-
cations of potential dependence between the observations. If the dependence is purely
temporal and is adequately represented by the models, then the usual procedures remain
valid; thus the only real problem is caused by interstation dependence. We handle this
using an empirical adjustment to the likelihood ratio statistic (Chandler and Bate, 2007).
Unfortunately, for GLMs involving a dispersion parameter (such as the model for rainfall
amounts here) and for which model comparison would normally be carried out using a
deviance based F test, this adjustment can be used for the numerator of the F statistic
but not for the denominator. For the purposes of model comparison, therefore, we have
used maximum likelihood estimators of dispersion parameters throughout and have used
likelihood ratio tests based on the chi-squared distribution.

The theory outlined above is implemented in the GLIMCLIM software package
(Chandler, 2002), which has been used for all of our modelling.

8.4.3 Covariates considered

Prior to modelling, a small number of potential covariates were identified as candidates
for a parametric representation of spatial and temporal structure in both precipitation
occurrence and amounts. The fitted models are likely to be oversimplified because of the
small number of covariates considered: this is a deliberate decision that acknowledges the
relative sparsity of information about, for example, regional variation that can be obtained
from a network of 11 stations. An alternative approach would be to represent the structure
nonparametrically, for example using GAMs. However, nonparametric modelling can be
computationally costly for extremely large data sets and when (as seen below) many inter-
actions are present. Moreover, the adjustment of standard errors and model comparison
statistics for intersite dependence is an area that has so far received relatively little atten-
tion in the nonparametric modelling literature; see, however, Bowman, Giannitrapani and
Scott (2009). Thus a parsimonious parametric approach, although imperfect, is intended
to provide a reasonable approximation to the main features of interest. The adequacy of
this approximation can be checked using appropriate residual analyses.

The potential covariates fall into several distinct categories. First, to account for
temporal dependence, functions of previous days’ rainfalls were considered. These include
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indicator variables taking the value 1 if rainfall occurred previously and 0 otherwise, as
well as log-transformed rainfall amounts (in fact, the transformation used was log(1 + y)

rather than log y, to avoid problems when previous days were dry). Network-averaged
values of these variables were considered, as well as at-site values. Both weighted and
unweighted network averages were tried: in the weighted case, the weights were taken
to decay exponentially with distance from the site of interest and the decay rate was
estimated by maximum likelihood.

Seasonality was represented via Fourier covariates (see Section 3.2), specifically
cos (2πk × day of year/365) and sin (2πk × day of year/365), for k = 1 and 2. The
annual cycle and its first harmonic should provide a reasonable representation of
intraseasonal variation within the winter half-year considered here.

Systematic regional variation, for example the west–east and south–north rainfall
gradients (see Section 8.2) along with the effects of topography, was represented by
considering station altitude as a covariate along with functions of latitude and longitude.
With regard to station altitude, residuals from a preliminary modelling exercise showed
some unexpected structure suggesting that in some cases the recorded station altitudes
were incorrect. Further investigation revealed that some stations are located in areas of
heterogeneous topography so that their altitudes may not be representative of the rainfall
they receive. For example, one station is 32 m above sea level, but is situated at the bottom
of a narrow valley whose walls rise steeply to an altitude of over 150 m on both sides. We
therefore defined an ‘effective altitude’ for each station, that could be considered more
representative of the rainfall it receives. This was determined subjectively by inspection
of maps. Since any such exercise is necessarily imprecise, effective altitudes were defined
to the nearest 50 m; the values for each station are given in Table 8.1.

Any regional structure that is not accounted for by dependence on (effective) altitude
is likely to vary smoothly in space. Thus, a representation using smooth basis functions
was considered: bases of Legendre polynomials were used for both latitude and longitude.
Polynomial bases are likely to provide a reasonable approximation to the regional struc-
ture when, as here, the west–east and south–north rainfall gradients are anticipated to be
essentially monotonic; see Chandler (2005). The degree of polynomials considered was
restricted to a maximum of two, however, due to the relatively limited information avail-
able about regional variation. A quadratic surface has the flexibility to represent moderate
curvature, but by restricting the complexity of the fitted surfaces we hope to avoid the
risk of overfitting.

Finally, a linear trend covariate was considered. According to models (8.1) and (8.2),
this will lead to modelled precipitation changes that are linear on the log-odds scale for
occurrence, and on the log scale for amounts. Although this could be seen as unrealistic, it
is primarily intended to provide a convenient and interpretable measure of overall change
during the period of record.

8.4.4 Modelling strategy

The basic approach to the modelling was, separately for occurrence and amounts, to
start by building a ‘baseline’ model representing the overall intraseasonal, regional and
autocorrelation structure in the data. This was done in stages, at each stage adding one or
more terms to the model and using a dependence-adjusted likelihood ratio statistic to test
for the significance of the new terms. Some care is required in interpreting the results
of significance tests in large data sets such as this one, since they may detect genuine
effects that are nonetheless too small to be of any practical relevance (Chandler, 2005).
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Therefore, terms were only retained if they appeared significant at the 1 % level. At each
stage, the decision regarding which term or group of terms to consider next was informed
by physical understanding and an examination of model diagnostics (see below). As usual
in this kind of modelling (see Section 3.2), sine and cosine terms were always considered
in pairs and no covariate representing precipitation at a lag of k > 1 days was consid-
ered without including lags 1, . . . , k − 1 as well. Furthermore, no interactions were
considered without including the corresponding main effects and no higher-order interac-
tions were considered without including all of the corresponding lower-order interactions.

After acceptable baseline models had been found for both occurrence and amounts
(judged on the basis of diagnostics, along with a lack of further significant covariates or
interactions among the candidates considered), they were extended by adding the trend
and its interactions with the existing covariates. The interactions were built up in stages,
testing for significance at each stage as before. Finally, the overall significance of the
trends was assessed by comparing the ‘trend’ and ‘baseline’ models using likelihood ratio
statistics adjusted for interstation dependence.

8.5 Results

Table 8.3 summarises the final models, both with and without the trend and its interactions.
The adjusted likelihood ratio tests indicate overwhelming evidence for trends in both
occurrence and amounts. The remainder of the discussion therefore focuses on the models
containing trend terms.

Table 8.3 Summary of fitted models for rainfall occurrence and amounts: ‘df’ is
number of coefficients; ‘log L’ maximised log-likelihood ignoring intersite dependence;
‘	ADJ’ dependence-adjusted likelihood ratio statistic for comparing ‘trend’ and
‘baseline’ models; ‘p’ associated p-value.

Model df log L 	ADJ p

Occurrence Baseline 21 −46 364.54 – –
Linear trend 24 −46 330.51 156.11 < 10−16

Amounts Baseline 13 −69 789.60 – –
Linear trend 16 −69 765.80 56.31 3.6 × 10−12

In both of these models, regional variation is represented using a combination of
effective altitude and a quadratic function of latitude and longitude; moreover, both models
contain terms representing intraseasonal variation, although there are more of these for
occurrence than for amounts. The occurrence model also contains terms representing
autocorrelation; such terms were found not to be statistically significant in the amounts
model. Autocorrelation in rainfall occurrence is represented by covariates defined as the
proportion of stations experiencing precipitation at lags of one and two days, with an
additional indicator for precipitation occurrence at the location of interest at a lag of one
day. When computing the proportion of stations experiencing precipitation, the option of
giving more weight to stations that are close to the location of interest was explored, but
found not to be justified on the basis of likelihood ratio tests.

The occurrence model contains interactions between previous days’ rainfalls and both
seasonal and regional components: this indicates intraseasonal and regional variation in
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the strength of temporal autocorrelation. There are no interactions between seasonal and
regional components; thus the intraseasonal variation in precipitation occurrence is the
same at all locations. Nor are there any interactions between the trend and previous
day’s precipitation occurrence; if present, these would relate to the probability of a wet
day following another wet day and hence to the relative clustering of wet and dry days.
There are, however, interactions between the trend and regional components; these are
explored below.

The amounts model contains interactions between seasonal components and both
altitude and longitude; thus intraseasonal variation is altitude- and longitude-dependent.
Another way of viewing the seasonality–longitude interaction is that the west–east pre-
cipitation gradient is seasonally varying. The amounts model also contains interactions
between the trend function and regional components; again, these are explored below.

Neither model contains any interactions between the trend and seasonal components:
these have been explored, but found to be insignificant. Thus there is no direct evidence
for changes in intraseasonal structure.

8.5.1 Diagnostics

Before examining the fitted models in detail, in particular to determine the implied struc-
ture of precipitation trends in the region, it is worth checking the modelling assumptions.
The first check is that the models account for all of the systematic intraseasonal and
interannual structure in the data. This can be checked by examining the mean and stan-
dard deviation of Pearson residuals (see Section 3.5) for each month and year of the
record. Figure 8.3 shows the results for the amounts model. The corresponding plots for
precipitation occurrence are very similar.

The dashed lines in the top two plots of Figure 8.3 are approximate 95 % limits about
zero, computed under the model and adjusted for intersite dependence as described by
Chandler (2002, Appendix D.3). If the model has captured the systematic seasonal and
interannual structure, then approximately 95 % of the mean residuals should lie between
these lines. The plots of residual standard deviations can be used to diagnose problems
with the assumption of a common dispersion parameter for the gamma distributions; see
the discussion after Equation (8.2).

Except for a slightly higher residual standard deviation in October, the monthly plots
in Figure 8.3 reveal little structure. Thus the model has successfully captured any sea-
sonality in the data. The uniformity of standard deviations from May through September
suggests that the gamma dispersion parameter is remarkably constant throughout this
period. Similarly, the annual plots reveal no obvious trends in either the mean or standard
deviation of residuals: we conclude that the linear trend covariate is adequate to describe
the long-term variation in precipitation amounts.

In a similar way, the representation of regional variation can be checked by examining
maps of mean Pearson residuals at each station: if the models are adequate, there should
be no obvious spatial structure in such maps. The results are not shown here; they are
indeed spatially unstructured however. As with other applications of this methodology
(e.g. Chandler and Wheater, 2002; Yang et al., 2005), the models appear systematically
to over- or underpredict at some stations, but not in a spatially organised way. For example,
the occurrence model has a large positive mean residual, indicating underprediction, at
station 9; however, at neighbouring station 6, the same model has a significant negative
mean residual. Such results are associated either with local-scale variations in rainfall that
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Figure 8.3 Monthly and annual summaries of Pearson residuals from the amounts model
including linear trend. Dashed lines in mean plots are 95 % pointwise limits about zero,
adjusted for intersite dependence.

the models are not designed to reproduce or with variation in observer practice at different
stations that has not been eliminated by the thresholding described in Section 8.3.

The final check is for the assumption of gamma distributions in the amounts model.
For this we have used the fact that if Y has a gamma distribution with mean μ and shape
parameter ν, then Y/μ has a gamma distribution with mean 1 and shape parameter ν. The
fitted model provides an estimate of μ for each observation, so that the observations can
be scaled to have the same gamma distribution under the model. To check this, we plot
the observed quantiles of these scaled observations against the quantiles of the expected
distribution. The result reveals a satisfactory fit. It is not shown here, however, since
for present purposes the precise distributional assumptions are less important than the
assumed variance structure. Our checks of residual standard deviations suggest that the
variance structure is indeed adequate so that, regardless of whether or not the observations
follow gamma distributions, the results can be justified as coming from a quasi-likelihood
fit (Section 3.5).

Overall then, these diagnostics suggest that the modelling assumptions are broadly
satisfied and that the models do a good job of representing the systematic structure in
the data. We can therefore examine the fitted models in some detail, and have some
confidence in any conclusions that emerge.

8.5.2 Trends in wet-day precipitation amounts

A detailed interpretation of the fitted models is complicated, both because of the nonlin-
ear link functions and because of the presence of so many interaction terms (10 for the
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occurrence model and seven for amounts). Since interest here is primarily in characterising
the precipitation trends, however, we concentrate on the contributions of the trend com-
ponent. Table 8.4 shows an edited extract of GLIMCLIM output for the fitted amounts
model. This shows that if all other covariates are unchanged (for example by considering
the same calendar day each year so that the seasonal covariates are effectively fixed) then
a unit increase in the trend covariate, which is in units of decades, changes the log mean
wet-day rainfall by an amount

−0.0289 − (0.0222 × Lat1) − (0.0498 × Long1) . (8.3)

Here, ‘Lat1’ and ‘Long1’ are first-order Legendre polynomial transformations of latitude
and longitude respectively: these are linear functions taking the value −1 at the south-
ern (respectively western) edge of the study area and increasing to +1 at the northern
(respectively eastern) edge. At all locations for which this quantity is positive (respec-
tively negative), therefore, the model indicates an overall increase (respectively decrease)
in precipitation intensity over the study period.

Table 8.4 Edited extract from GLIMCLIM output for the final amounts
model, showing contributions of the trend covariate to the linear predictor.

Main effect: Coefficient Std Err

------------ ----------- -------

...

Trend 1 - Linear (0.1 per year) -0.028895 0.0110

...

2-way interactions: Coefficient Std Err

------------------- ----------- -------

...

Trend 1 - Linear (0.1 per year) -0.022237 0.0058

with Legendre poly 1 for Latitude

Trend 1 - Linear (0.1 per year) -0.049816 0.0077

with Legendre poly 1 for Longitude

Perhaps surprisingly, (8.3) yields a positive value at stations 15, 20 and 31 (see
Figure 8.1(b) for locations); it is negative at all other stations, however. Its actual value
ranges from −0.057 to +0.036, at stations 26 and 15 respectively. Since these quan-
tities are on a log scale due to the use of a logarithmic link function in model (8.2),
they correspond to multiplicative decadal changes in mean precipitation intensity of
exp(−0.056) = 0.94 and exp(0.036) = 1.04. These results indicate that wet-day amounts
have decreased except in the southwest corner of the region.

8.5.3 Trends in precipitation occurrence

For the occurrence model, the analogue of (8.3) is

−0.0747 + (0.0312 × Long1) + (0.0338 × Altitude) , (8.4)

where ‘Altitude’ here denotes the effective station altitude given in Table 8.1. Unfor-
tunately, however, a straightforward interpretation of (8.4) is not possible, due to the
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presence of covariates representing previous days’ rainfalls in the model (recall that the
amounts model contains no such covariates). This complicates matters to a surprising
degree, as we now demonstrate.

Notice first that for station s and day t our occurrence model (8.1) has the form

πst = g−1

⎡
⎣αst +

k∑
j=1

fstj

(
yt−j

)
⎤
⎦ . (8.5)

Here, g−1(·) is the inverse of the logistic link function, yt−j is the vector of all binary
rainfall occurrence indicators on day t − j and αst denotes the contributions of all other
covariates to the linear predictor. Any interactions involving previous days’ occurrence
are subsumed into the functions

{
fstj (·)} so that previous occurrences make no contri-

bution to αst . For the particular model fitted here, k = 2 and the functions fst1(·) and
fst2(·) are linear: both contain a contribution from the overall proportion of wet stations
on the respective days, and fst1 has an additional contribution from the binary occurrence
indicator at station s itself. These functions are also time-varying, because of interac-
tions between previous days’ occurrences and the seasonal covariates. Contributions to
αst come from the regional, seasonal and trend covariates and their mutual interactions,
along with the intercept. Therefore αst varies slowly with t : the values of the trend
and seasonal covariates change little from day to day. As a result we can approximate
αs(t−1), . . . , αs(t−k) with αst . Although this depends on the values of covariates at time t ,
these covariates play no further role from here on; we therefore treat αst as a constant,
and all subsequent calculations are considered as conditional upon its value.

Denoting by S the number of stations considered, (8.5) in fact defines a system of S

equations for day t . It is convenient to stack these into a single vector equation:

π t = h

⎡
⎣αt +

k∑
j=1

ftj
(
yt−j

)
⎤
⎦ ,

where h(·) = g−1(·) is considered as acting componentwise on the right-hand side. For
our model, the linearity of the

{
fstj (·)} means that ftj

(
yt−j

)
can be written as �tj yt−j

for some S × S matrix �tj . Notice also that π t = E (yt |yt−1, . . . , yt−k).
Suppose now that we want to find the vector of unconditional occurrence proba-

bilities on day t , π̄ t , say. By the law of iterated expectations we have π̄ t = E {yt } =
E

{
E

[
yt |yt−1, . . . , yt−k

]} = E {π t }. Combining this with the previous expression for π t ,
we obtain

π̄ t = E

⎧⎨
⎩h

⎡
⎣αt +

k∑
j=1

ftj
(
yt−j

)⎤⎦
⎫⎬
⎭ , (8.6)

where the expectation is over the joint distribution of yt−1, . . . , yt−k .
In general, the functions h(·) and

{
ftj (·)} will be nonlinear. Thus the expectation

on the right-hand side of (8.6) depends on the full joint distribution of yt−1, . . . , yt−k .
A possibly unexpected consequence is that the marginal occurrence probabilities π̄ t are
affected by interstation dependence (which is not explicitly modelled by the GLM): a
single GLM could thus yield different expectations depending on the assumed dependence
structure. To understand this more clearly, it may be helpful to note that our occurrence
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model can be regarded as partially defining a Markov process with state space consisting
of the 2kS possible configurations of rainfall occurrence at each of the S stations over
a consecutive k-day period. The properties of such processes are usually studied via the
matrix of interstate transition probabilities from one time point to the next (see for example
Ross, 2003, Chapter 4); however, in the current context, to specify this matrix in full would
require a model for the joint probabilities of precipitation occurrence simultaneously at
all stations, conditional on previous days’ configurations.

Dependence of (8.6) upon the full joint distribution can be avoided if both h(·) and{
ftj (·)} are linear or if, for each s ∈ {1, . . . , S} and j ∈ {1, . . . , k}, the sth component

of
{
ftj (·)} acts only on the sth component of yt−j . In our case, the latter condition does

not hold since the conditional occurrence probability πst depends on the proportion of
stations experiencing rainfall on each of the previous days; hence each component of
ftj (·) acts on all of the components of yt−j .

Fortunately, as already noted, for our occurrence model the functions
{
ftj (·)} are

linear so that (8.6) can be written as

π̄ t = E

⎧⎨
⎩h

⎡
⎣αt +

k∑
j=1

�tj yt−j

⎤
⎦

⎫⎬
⎭ .

The function h(·) is not linear; however, if it is approximately linear over the range of
its argument then we can write

E

⎧⎨
⎩h

⎡
⎣αt +

k∑
j=1

�tj yt−j

⎤
⎦

⎫⎬
⎭ ≈ h

⎡
⎣E

⎧⎨
⎩αt +

k∑
j=1

�tj yt−j

⎫⎬
⎭

⎤
⎦

= h

⎡
⎣αt +

k∑
j=1

�tj E
{
yt−j

}⎤⎦ . (8.7)

A further approximation, again using the fact that day-to-day changes in marginal occur-
rence probabilities are due solely to seasonality and long-term trends and hence are small,
is to replace E

{
yt−j

}
with E {yt } = π̄ t . Thus we have π̄ t ≈ h

[
αt + ∑k

j=1 �tj π̄ t

]
, and

the vector of marginal occurrence probabilities can be calculated approximately by solving
the equation

π̄ t − h

⎡
⎣αt +

k∑
j=1

�tj π̄ t

⎤
⎦ = 0 . (8.8)

Our function h(·) is the inverse logistic: h(x) = [
1 + exp (−x)

]−1
. Thus an analytical

solution to (8.8) does not exist. However, numerical techniques can be used. We find that
a straightforward Newton–Raphson scheme works well; this starts with an initial value
π̄

(0)
t and then iterates

π̄
(�+1)
t = π̄

(�)
t −

⎛
⎝I − H (�)

k∑
j=1

�tj

⎞
⎠

−1 ⎛
⎝π̄

(�)
t − h

⎡
⎣αt +

k∑
j=1

�tj π̄
(�)
t

⎤
⎦

⎞
⎠
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to convergence. Here, I is the S × S identity matrix and H (�) is the diagonal S × S

matrix with sth element h′
[
αst + ∑k

j=1 φstj π̄
(�)
t

]
, where φstj is the sth row of �tj . For

the inverse logistic function, we have h′(x) = e−xh2(x).
Since the primary aim of this study is to learn about precipitation trends, it is arguably

less relevant to study the occurrence probabilities themselves than their changes over time.
Equation (8.8) can be used to explore this for our model. The absence of interactions
between the trend and previous days’ covariates ensures that if the trend covariate changes
with all others held constant (so that one is effectively looking at the same calendar
day in a different year), αt will be affected but the

{
�j t

}
will not. Suppose then that

αt changes to αt + δ. Then the new marginal occurrence probability vector, π̄∗
t , say,

approximately satisfies

π̄∗
t = h

⎡
⎣αt + δ +

k∑
j=1

�tj π̄
∗
t

⎤
⎦ .

Row s of this vector equation reads

π̄∗
st = h

⎡
⎣αst + δs +

k∑
j=1

φstj π̄
∗
t

⎤
⎦

= h

⎡
⎣αst +

k∑
j=1

φstj π̄ t + δs +
k∑

j=1

φstj

(
π̄∗

t − π̄ t

)⎤⎦

≈ π̄st +
⎡
⎣δs +

k∑
j=1

φstj

(
π̄∗

t − π̄ t

)⎤⎦h′

⎡
⎣αst +

k∑
j=1

φstj π̄ t

⎤
⎦ ,

the last line following from a first-order Taylor expansion and the approximation π̄st ≈
h

[
αst + ∑k

j=1 φstj π̄ t

]
, which is row s of (8.8). We thus have

π̄∗
st − π̄st ≈

⎡
⎣δs +

k∑
j=1

φstj

(
π̄∗

t − π̄ t

)
⎤
⎦ h′

⎡
⎣αst +

k∑
j=1

φstj π̄ t

⎤
⎦ .

Reassembling the S resulting equations into vector form now yields

π̄∗
t − π̄ t ≈ H

⎡
⎣δ +

k∑
j=1

�tj

(
π̄∗

t − π̄ t

)⎤⎦ ,

where H is a diagonal matrix of derivatives as before, now evaluated at π̄ t . Finally, after
some rearrangement, we obtain

π̄∗
t ≈ π̄ t +

⎛
⎝I − H

k∑
j=1

�tj

⎞
⎠

−1

Hδ . (8.9)

This shows that for the model fitted here, it is far from straightforward to translate
changes in the linear predictor to the corresponding changes in occurrence probabilities;
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the latter changes are not even guaranteed to have the same sign as the former at all
stations. In particular, it is not possible to draw any conclusions directly from the coef-
ficients of the trend covariate in the model. Essentially, this is because the precipitation
occurrence at station s on day t depends on the occurrences at all stations on the pre-
vious two days. Thus the modelled trend at station s has a direct component from the
trend covariate, along with an indirect component from trends at the other stations; if
these components have opposite signs then the net effect cannot be determined without
evaluating the probabilities explicitly.

The accuracy of the fundamental relationship (8.8) depends on the adequacy of the
approximations involved in deriving it. Chief among these is (8.7), which is justified
providing h(·) is reasonably linear throughout the range of its argument. This argument
is just the linear predictor in the GLM. For the model fitted to our data set, 90 % of these
linear predictors lie in the range (−1.75, 1.40). A plot of h(x) = [1 + exp(−x)]−1 shows
that it is very close to linear over this interval; thus we might expect that (8.8) will be
accurate in this particular application. Notice also that if k = 0 then (8.8) is exact: thus,
even for nonlinear h(·), the approximation should be reasonable for models with weak or
moderate temporal dependence structure.

To check the adequacy of (8.8) we have compared the results with those obtained
via simulation. For the period 1960–2005, 100 multistation precipitation time series were
generated from the fitted models. For a given station and date, the proportion of simu-
lations for which precipitation occurred can be used as an estimate of the corresponding
probability. As we have seen, marginal occurrence probabilities are partially determined
by the interstation dependence structure and, in the present application, this dependence
is strong: on any given day, stations tend to be either mostly wet or mostly dry. To
capture this in the simulations, we have used the dependence structure proposed by Yang
et al. (2005) in which the number of wet stations on any given day has a beta-binomial
distribution with the location parameter determined by the occurrence model (8.1). For
our data, the shape parameter of this beta-binomial distribution is estimated as 0.57; this
corresponds to ‘U’-shaped distributions for numbers of wet stations and hence to strong
interstation dependence (see Yang et al., 2005, for more details).

Specimen results from this simulation exercise, showing marginal probabilities of
precipitation occurrence at stations 20 and 26 on 1 July and 1 October each year, are
shown in Figures 8.4(a) and (b). For these stations, (8.4) yields values of −0.064 and
0.037 respectively. 1 July corresponds to the wettest part of the year, whereas 1 October
is towards the end of the winter period when precipitation is less frequent.

The solid lines in Figures 8.4(a) and (b) are the marginal probabilities of rainfall
occurrence computed from (8.8): these show that the modelled trends in rainfall occurrence
appear very close to linear. They also show that the decline at station 20 is substantially
greater than the increase at station 26, which might be expected given the values of
(8.4) at the two stations. The trend slopes in the two plots seem very similar, but the
difference between the two stations is reduced in October relative to July. This is to be
expected: the model contains interactions between covariates representing seasonal and
regional variation, but no seasonal–trend interactions. For the remainder of our discussion,
therefore, we focus on the results for 1 July since the results for other calendar dates
are similar.

The dashed lines in Figures 8.4(a) and (b) show the simulation based estimates of
the same marginal probabilities. These are quite variable, since each estimate is based on
just 100 daily values. Overall, however, the theoretical approximations seem to match the
simulations well. As a further check, the plots also show empirically derived estimates
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Figure 8.4 Changes in daily rainfall, 1960–2005. Solid lines in the top plots are marginal
probabilities of rainfall occurrence at stations 20 (black) and 26 (grey) on (a) 1 July and
(b) 1 October each year, obtained from (8.8); dashed lines are estimates obtained from 100
simulations of the fitted model and points are estimates obtained directly from observations
(see text for details). Bottom plots: (c) shows modelled marginal occurrence probabilities
at all stations on 1 July each year and (d) shows the expected rainfall on 1 July each year
as a percentage of expected rainfall on 1 July 1960.

of these occurrence probabilities, obtained directly from the data without reference to
the fitted models. Each empirical estimate is computed using data from a 5-year, 15-
day window centred on the calendar date of interest. Thus, for example, the estimate
at station 20 for 1 July 1960 is computed from all observations at that station between
24 June and 8 July, for the years 1958–1962. These empirical estimates suggest that
the model does a good job at reproducing trends in precipitation occurrence: although
they tend to cluster in runs above or below the solid trend lines, this is largely due to
the fact that successive empirical estimates are strongly interdependent because they are
computed from overlapping observation windows. It is perhaps worth noting that although
the models were fitted to these same data, they are calibrated to reproduce conditional
rather than marginal relationships: the indirect relationship between the two, approximated
by (8.8), demonstrates that a comparison of observed and modelled trends in the marginal
occurrence structure is quite a stringent test of the internal model structure.

Having established that (8.8) provides a good approximation to the observed occur-
rence probabilities, Figure 8.4(c) plots these approximated probabilities for each year
at all stations. This plot shows substantial variation between stations: some show little
change or small increases over the period of record, while others show marked decreases.
To assist interpretation of this plot, Table 8.5 shows the changes in marginal probabilities
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Table 8.5 Summary of modelled precipitation changes on 1 July, 1960–2005. δOCC is
the change in conditional log odds of precipitation occurrence; π̄2005 − π̄1960, is the
change in marginal occurrence probabilities derived from (8.8); ‘Approximation’, the
value of (8.9); δAMT, the change in log mean wet day rainfall amount. Stations are listed
in order from north to south (see Figure 8.1).

Station
5 7 9 6 16 30

δOCC −0.418 0.092 0.065 0.065 −0.016 0.144
π̄2005 − π̄1960 −0.114 0.005 0.000 0.000 −0.017 0.021
Approximation −0.107 0.007 0.002 0.002 −0.016 0.023
δAMT −0.096 −0.177 −0.107 −0.092 −0.038 −0.020

Station
20 26 19 31 15

δOCC −0.290 0.166 −0.060 −0.114 −0.306
π̄2005 − π̄1960 −0.083 0.029 −0.026 −0.039 −0.087
Approximation −0.077 0.031 −0.024 −0.036 −0.079
δAMT 0.083 −0.256 −0.012 0.077 0.161

between 1960 and 2005 at all stations. The three lowest-lying stations (5, 15 and
20 – see Table 8.1) all show substantial decreases in precipitation occurrence over this
period, whereas stations with effective altitudes of 300 m or above (numbers 6, 7, 9 and
30) show little change or, in some cases, a slight increase. This is perhaps to be expected
given the decadal contributions (8.4) from the trend covariate to the occurrence model.
The values of these contributions over the 45-year period considered here are given as
δOCC in Table 8.5. A comparison of the first two rows in the table confirms our earlier
assertion that it is difficult to translate changes from one scale to the other: although
there are no stations here where δOCC and π̄2005 − π̄1960 have different signs, it is clear
that the marginal probabilities would decrease at any station with 0 < δOCC < 0.05.

The third row of Table 8.5 shows the value of the approximation (8.9) to π̄2005 − π̄1960.
This is computed using the values of δOCC given in the table, along with the marginal
probabilities for 1 July 1960 from (8.8). The approximation is seen to be generally accurate
at all stations.

8.5.4 Combined trends in occurrence and amounts

The final row of Table 8.5 shows the modelled change, again over the period 1960–2005,
in log mean wet-day rainfall amounts on 1 July. This is straightforward to obtain from
(8.3) (simply multiply by 4.5, which is the period length in decades), because the amounts
model contains no covariates representing lagged rainfalls. The tabulated station ordering
brings out the north–south pattern of trends in wet-day rainfall amounts: by and large,
negative changes are most pronounced at the most northerly stations with positive changes
in the south. The only two stations that deviate from this overall pattern are 20 and 26;
these both fall slightly off the main north–south line of stations (see Figure 8.1) and the
deviations here are due to the contribution of station longitude to (8.3).
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Having established the trends in occurrence and amounts separately, we can combine
these to obtain an overall picture of changes in precipitation over the region. If π̄st is
the probability of occurrence at station s and time t , and μst is the expected rainfall
amount conditional on occurrence, then the overall expected rainfall is π̄stμst . For each
station, Figure 8.4(d) shows the overall percentage change in this quantity on 1 July each
year between 1960 and 2005. Unsurprisingly, there is once again considerable variation
between stations. However, decreases in overall mean precipitation are now apparent
almost everywhere. These decreases are in excess of 10 % over the 45-year period at the
three most northerly stations (5, 7 and 9), along with the easternmost station 26. Of the
remaining stations, numbers 6, 16, 20 and 19 show overall decreases of between 5 % and
10 %, and stations 30, 31 and 15 show small increases of 1 %, 2 % and 3 % respectively.
An examination of Table 8.5 suggests that these changes are primarily driven by changes
in precipitation intensity on wet days, although changes in the frequency of occurrence
play an important role, notably at stations 5 (where a reduction in occurrence frequen-
cies compounds the changes in intensity) and 30 (where slight increases in occurrence
frequencies, associated with the high altitude of this station, offset the reduced intensities).

8.6 Summary and conclusions

The analysis above has revealed substantial trends in both the frequency and intensity
of precipitation in the study area over the last half-century. A linear representation of
these trends appears to provide a useful summary of overall change, although there is
pronounced regional variation in the trend slopes. By fitting models simultaneously to
data from all stations, this regional variation has been represented explicitly. The results
show that the patterns of change in occurrence and intensity are different: reductions in
occurrence are greatest at low-altitude locations in the west of the study area, whereas
reductions in intensity are greatest in the north and east. The net effect is generally a
reduction in midwinter precipitation of between 5 % and 25 %, except in the southwest
corner of the study area. Although the models indicate increases in frequency or intensity
at a few stations, these increases are all small and no station has a modelled increase in
both frequency and intensity.

The differences between the regional structures of change in frequency and intensity
suggest that the physical mechanisms behind the precipitation decline are complex. They
are, however, consistent with a southward shift of the mid-latitude weather systems that
are responsible for most of the winter precipitation in the region (Alexander et al., 2010;
Hope, Drosdowsky and Nicholls, 2006): this would weaken the strength of westerly flow
at the study latitudes and hence reduce the transport of moisture inland.

Our results agree in broad terms with the conclusions from previous studies, although
there are some discrepancies in the detail. The most notable of these is the absence of
interaction between trend and seasonal components in our models, suggesting that (at least
on the scale of the linear predictors) there is no intraseasonal variation in the magnitude of
precipitation trends. IOCI (2002) and Bates et al. (2008), for example, concluded that over
a much larger region, the precipitation decline has been strongest during the months of
May to July. However, the apparent discrepancy is probably due mainly to differences in
study domains. For example, the results in Bates et al. (2008) relate to regional averages
over almost all of the land area shown in Figure 8.1(b) whereas the present work provides
no basis for extrapolation outside the shaded rectangle. Our model based approach does,
however, provide a more formal means of testing for intraseasonal variation than has
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previously been attempted, and it would be of interest to extend it to the larger region and
compare the results with those from earlier studies. The absence of intraseasonal variation
in our particular study area seems quite clear; this implies that the physical mechanisms
responsible for the precipitation changes here are essentially the same throughout the
winter half-year.

Data quality problems may also be responsible for some differences between the
present results and those of previous studies. The problems noted in Section 8.3 have
been uncovered here for the first time: failure to address these would lead to exagger-
ated estimates of drying trends. Indeed, one of the key messages from this work is the
importance of checking the data carefully prior to any trend analysis.

The present study was primarily motivated by a desire to understand the decline
in IWSS inflows shown in Figure 8.1(a). The results suggest that reduced precipitation
is likely to be a major contributor to this decline. Indeed, over the 1958–2007 period
covered by the precipitation data, the trend in inflows is monotonically decreasing, which
is entirely consistent with our modelled precipitation changes over this period. Since most
of the water supply catchments are located within the Darling Range, and the average
height of this range is around 300 m, our analysis implies that reduced inflows are probably
associated with declines in precipitation intensity rather than frequency: at this altitude,
precipitation frequency has changed relatively little over the last half-century.

A final contribution of this paper has been the development of simple approximate
expressions for some of the model properties; theoretical properties are difficult to derive
for nonlinear, nonstationary and multivariate time series models, and as far as we are
aware this is the first time that such a derivation has been attempted for the class of
models considered here. For our occurrence model, the approximations have been shown
to provide a quick, computationally efficient and apparently accurate alternative to sim-
ulation if interest is in the marginal occurrence probabilities at any specific time point.
However, it is possible that this example is particularly well suited to the approximations
because the lagged terms enter linearly into the linear predictor, and the inverse link func-
tion h(·) is itself approximately linear throughout most of our data set. More experience is
therefore required to understand better how accurate and useful such approximations may
be in general, and an alternative strategy, of fitting models that represent the marginal
probabilities directly, may also be worth considering. An example of this latter approach
is given by Kneib and Fahrmeir in Chapter 10 of the present volume.
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Estimation of common trends
for trophic index series
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9.1 Introduction

Eutrophication – the presence of abnormally high levels of nutrients in water bodies, often
caused by agricultural fertilisers leaching into lakes and coastal waters – often leads to an
increase of phytoplankton in the water and to the development of nuisance phytoplanktonic
blooms. This often results in discoloration and reduced transparency of the water column,
and in severe cases may significantly impact the benthos. Eutrophication is a global
problem and has increased considerably in the last few decades in coastal and shelf waters
(Fletcher, 1996). In the most serious manifestations, microalgal blooms are accompanied
by a massive growth of submersed and floating macrophytes (Vollenweider, 1968, 1981).
Other undesirable effects may follow, such as reduced biodiversity and formation of
toxic nutrients (H2S, CH4, CO2 and NH3). These phenomena have been observed and
documented with increasing frequency, raising concerns over whether the monitoring
of such events is adequate and whether current practice affords a sufficient sampling
frequency to manage and protect coastal function effectively.

Statistical Methods for Trend Detection and Analysis in the Environmental Sciences , F ir st Edition.
Richard E. C handler and E. Maria n S cott.
©  2011 John Wiley & Sons, Ltd. P ublishe d 2011 by John Wiley & Sons, Ltd. ISBN: 978-0-470-01543-8
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The impact of eutrophication (e.g. algal blooms, death of benthic fauna, shellfish
poisoning and oxygen depletion) can show considerable spatial and temporal differences
depending on where, when and in what context the bloom occurs. This high variability
is often related to the presence of large rivers that have a dominating influence over the
eutrophication level (trophic state) of a region. This is true for the Northern Adriatic Sea
and the coastal stretch in the Emilia-Romagna region of Italy (see Figure 9.1), which is
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under the direct influence of the inputs of the river Po (Rinaldi and Montanari, 1988;
Vollenweider, Rinaldi and Montanari, 1992) and is the area of interest in the present
study. When setting management objectives, it is important to know whether the water
column trophic state is largely determined by riverine water quality or by the extent and
frequency of the microalgal blooms (Pompei et al., 1995).

The areas facing the Po delta and the coast of the Emilia-Romagna region are directly
influenced by the river inputs of the hydrographic basin of the Po valley, conveyed by
the River Po itself, as well as the river inputs of the coastal basins. The influence of these
river inputs is evident from the salinity of the sea water, which falls noticeably along the
coastal area by comparison with the open sea. The great mass of freshwater transported
by the river Po (about 1500 m3 s−1) has a profound influence on the northwestern basin of
the Adriatic Sea and determines many of the ecological processes of the coastal system.
The unique hydrography and oceanography of the area means that the region is heavily
impacted by eutrophication: as such, it is one of the most problematic regions of the
whole Mediterranean Sea.

One approach to the study of eutrophication is to analyse a wide range of possible
ecosystem responses involving many variables such as nutrient flux, chlorophyll-a and
oxygen. An alternative is to define a synthetic index function, allowing the investigator to
reduce a complex biological system to a single site-specific numeric score (or category)
that can be interpreted by a nonspecialist within a ‘good’ versus ‘bad’ continuum, often to
meet a minimum legislative requirement (for review, see Diaz, Solan and Valente, 2004).
This methodology is popular with resource managers and endorsed by many applied
environmental scientists because of the ease in which assessments can be made, interpreted
and explained to policy makers and the public (Barbour, Stribling and Karr, 1995; Fausch
et al., 1990).

In this chapter, we use the multimetric TRophic IndeX (TRIX) (Giovanardi and
Vollenweider, 2004; Vollenweider, Montanari and Rinaldi, 1998), defined as

TRIX = [
log10 (Cha × aD% × Oxygen × N × P) + 1.5

]
/1.2,

where:

• Cha denotes chlorophyll-a concentration (μg L−1);

• aD% denotes oxygen (absolute % derivate for saturation);

• N denotes mineral nitrogen (N−NO3 + N−NO2 + N−NH4; as μg L−1); and

• P denotes total phosphorus (μg L−1).

The index is characterised by factors that are directly related to primary productivity,
including chlorophyll-a, oxygen saturation and nutritional factors (mineral, total nitrogen
and phosphorus); it is therefore assumed to be a good indicator of eutrophication levels
(trophic states). Numerically, the index is scaled from 0 to 10, covering a wide range of
eutrophication levels from oligotrophic (nutrient-poor) to eutrophic. Since the use of TRIX
is well developed for monitoring coastal and oceanic waters, it has become entrenched in
Italian environmental legislation and must be applied when monitoring all Italian coastal
seawaters (Leg. Dec. 258/00).

We use data from eight stations in the study area (Figure 9.1). They represent a
north–south and inshore–offshore trophic gradient. The northern stations (4, 304, 9,
309) are influenced by inputs from the rivers Po and Reno, and hence are subject to a
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higher risk of eutrophication. The southern stations (14, 314 19, 319) have lower nutrient
concentrations and productivity. TRIX time series are available from each station from
January 1982 to December 2005; however, due to several missing values at some stations
in the first couple of years, only data from 1984 onwards are used in the analyses below.
Samples were taken at various times per month but we use average monthly values to
obtain regularly spaced series.

At each location, salinity was measured: this may be an important covariate for TRIX
since it indicates the extent to which the location is influenced by freshwater inputs
from rivers and coastal basins. Another possible covariate is the month of sampling as it
represents the season.

The objective of the study is to describe the effects of pollution (as quantified by
the TRIX index) over time, in order to inform management strategies such as clean-
up operations and to set new regulations. It is therefore useful to know whether all
eight TRIX time series follow the same trend over time or whether there are different
trends. To answer this question, we have to adopt a data analysis strategy that takes
care of seasonality and the effects of salinity. The reason for this is as follows (see also
the discussion in Section 3.2). If all TRIX time series follow a seasonal (i.e. monthly)
pattern (and indeed they do), then the TRIX series are highly correlated but only due to
seasonality. However, the seasonality is not the common pattern that we are interested in.
The same holds for salinity; if all TRIX series are driven by salinity we need to know
the common residual patterns. This means that we either have to remove the seasonal
and salinity patterns from TRIX or include the seasonality component into the statistical
models and simultaneously estimate the seasonal components, the salinity effects and the
common trends. An extra problem may be that salinity itself exhibits a seasonal pattern.

We present two different statistical approaches. In the first we use additive models
(Wood, 2006; see also Section 4.2) incorporating temporal autocorrelation along with
a spatial residual correlation structures. Additive models represent the relationships
between TRIX, salinity and the temporal trends simultaneously. The disadvantage
is that it is difficult to build up a simultaneous model for time series at multiple
stations, although not impossible, as we will show in this chapter (for an alternative
line of attack in such situations, see Chapter 10). In the second approach, dynamic
factor analysis (DFA) is used (Harvey 1989; Zuur et al., 2003a,b). This multivariate
time series method extracts common trends in a similar way as principal component
analysis extracts axes (see Section 6.2). However, DFA is especially designed for
multiple time series and can incorporate (i) effects of covariates (e.g. month and
salinity), (ii) common trends and (iii) residual correlation. A detailed mathematical
description of DFA can be found in Zuur, Tuck and Bailey (2003) and Zuur et al.
(2003), and various ecological examples can be found in Erzini (2005), Erzini, Inejih and
Stobberup (2005), Chen et al. (2006), Laine et al. (2006), Zuur and Pierce (2004), Zuur,
Ieno and Smith (2007) and others.

Rather than just presenting our final models, we will show the process of how they
were obtained as well as discussing the relative merits of the intermediate models. As such,
this chapter can be regarded as a guide to the model-building process for practitioners.
In our view the road to the optimal models is as informative as the final model itself,
if not more so. The dynamic factor analysis and data exploration were carried out in
the software package Brodgar1 version 2.6.4, and the additive modelling was done in R
using the mgcv library (Wood, 2006).

1 www.brodgar.com.
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9.2 Data exploration

We start with an exploratory analysis of the data, following the protocol given in Zuur,
Ieno and Elphick (2010) and using some of the techniques described in Chapter 2. As
usual, the starting point is to plot each of the TRIX time series (Figure 9.2). Notice that
the series from the offshore stations have missing values, especially in the first few years.
There are no observations with extremely large or small TRIX values: this is confirmed
by Cleveland dotplots (not shown here) and by boxplots. Thus, initially at least, we can
work with the TRIX series as they stand without any need for data transformation. Similar
graphs (not shown here) have been made for salinity, in this case to see if there was need
for a data transformation to reduce the influential effects of outliers (see Section 3.1.5 for
a discussion of the effects of outlying covariate values when fitting regression models).
Once again, there are no obvious outliers so no transformation is required.
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Figure 9.2 TRIX series from the eight stations. The plots are sorted from north (top) to
south (bottom). The left column contains the inshore stations at 0.5 kilometres from the
coast and the right column the offshore stations at 3 kilometres. Note the missing values
at the start of the offshore series.
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Next we examine the sample autocorrelation function (see Section 2.1.3) for each
of the TRIX and salinity time series. The results in Figures 9.3 and 9.4 show that all
series exhibit seasonal patterns. However, the seasonality is considerably stronger for
TRIX than for salinity – thus any model that describes TRIX as a function of salinity
may need to include additional covariates to capture fully the seasonal variation in the
TRIX series – and is also stronger at the southern stations.
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Figure 9.3 Sample autocorrelation functions for the eight TRIX time series at lags up
to two years. Note that the southern stations (14, 314, 19, 319) have a stronger seasonal
pattern.

A key aspect that should be investigated in a data exploration is collinearity: the cor-
relation between covariates. As discussed in Section 3.2, a good tool to assess collinearity
is the variance inflation factor (VIF); see Zuur, Ieno and Smith (2007) for various appli-
cations and Montgomery and Peck (1992) or Draper and Smith (1998) for a statistical
discussion. To calculate the VIF for a particular covariate, it is regressed on all of the
other covariates and the R2 value (see Section 3.1) is calculated. A high R2 indicates
that most of the variation in the covariate of interest is explained by the other covariates,
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Figure 9.4 Sample autocorrelation functions for the eight salinity time series.

thereby indicating collinearity. The VIF is defined as

VIF = 1

1 − R2
.

A VIF greater than 5 or 10 is generally considered as large (Montgomery and Peck, 1992;
Quinn and Keough, 2002).

Here, we use VIFs to assess collinearity among the salinity time series. For all eight
series, the VIFs exceed 5, thereby indicating severe collinearity. To find a subset of the
series with low collinearity we can remove the series with the highest VIF and recalculate
the VIFs for the remaining series, then repeat the process a couple of times until remaining
VIFs are smaller than 5. After carrying out this process, the only salinity series remaining
are those at stations 4, 9 and 19. Despite small VIFs, however, there is still a certain
degree of collinearity between them, as illustrated by the scatterplots in Figure 9.5. In
case the collinearity is due to shared seasonal patterns, we have also computed VIFs for
salinity series in which seasonality was removed by subtracting the seasonal component
obtained from an STL decomposition (see Section 4.3.1); the results were similar. Hence,
the eight salinity time series behave in a very similar manner over time. This does not
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Figure 9.5 A pairplot for the three salinity time series with low VIF values. Units are
permils (parts per thousand).

come as a surprise because the sampling distance between stations in the area is relatively
small. However, from a statistical modelling perspective it suggests that if more than one
salinity time series is used as a covariate for the same response variable, the individual
effects of the different series will be difficult to disentangle from each other and hence
will be estimated imprecisely.

As a last step in the data exploration part of our analysis, we investigate the relation-
ship between TRIX and salinity. The scatterplots in Figure 9.6 indicate a clear negative
relationship between the two variables at each station. There is also some suggestion
that the strength of this relationship may increase moving from northwest (station 4) to
southeast (station 319): this indicates that we should consider including interaction terms
(see Section 3.2.2) in the models.

9.3 Common trends and additive modelling

In this section, we discuss a univariate smoothing method to estimate underlying patterns
in multivariate time series. We use additive modelling (Faraway, 2005; Wood, 2006;
Zuur, Ieno and Smith, 2007; Zuur et al., 2009), taking a step-by-step approach to the
development of an appropriate model for the TRIX series. Initially we fit separate models
to the data from each station. The first such model has the form:

TRIXt = α + f1 (t) + f2
(
Salinityt

) + εt where εt ∼ N
(
0, σ 2) . (9.1)
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Figure 9.6 Scatterplots showing the TRIX–salinity relationship at all eight stations. All
plots are on a common scale.

Here, ‘TRIXt ’ is the value of TRIX at time t (measured in years) for a particular station
and ‘Salinityt ’ is the corresponding salinity; the notation fj (·) refers to a smooth function
(see Chapter 4, where such smooth functions were denoted by mj(·)), which is constrained
to sum to zero so that the intercept α represents the overall mean TRIX value over time.
The noise sequence (εt ) is independently and normally distributed. Although Figure 9.6
indicated that the relationship between salinity and TRIX might be linear, the smooth
components give the model a bit more flexibility if necessary. After all, if the relationship
is really linear then a smoothing method should indicate this, and we can still revert to a
linear regression model afterwards. To do the reverse (i.e. use linear regression and then
inspect the residuals for any patterns) is feasible, although it is a bit more difficult and
time consuming. The term f1(t) represents the long-term trend in the data and is of prime
interest. To estimate the amount of smoothing for each smoothing curve, cross-validation
(Wood, 2006) is used. Model (9.1) is fitted separately to data from each station to give
estimated smoothing curves, intercepts and variances. Technical details of how to estimate
smoothing functions are discussed in Chapter 4; see also Wood (2006) and Hastie and
Tibshirani (1990).
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The residuals of each model were plotted against month (not shown here) and showed
a clear seasonal (i.e. monthly) pattern. This indicates a serious model misspecification.
Hence, as already indicated by the autocorrelation function, the seasonal pattern in salin-
ity is not strong enough to explain the seasonal pattern in TRIX. Therefore we add a
categorical ‘month’ covariate to the model. In practice this is done by defining dummy
variables {mjt : j = 1, . . . , 11} such that mjt takes the value 1 if time t corresponds to
month j , so that the model becomes

TRIXt = α + f1 (t) + f2
(
Salinityt

) +
11∑

j=1

γjmjt + εt . (9.2)

Here, γj is a regression coefficient representing the difference between the mean TRIX
levels in month j and in month 12 (see Section 3.2.1); the intercept α now corresponds to
the mean TRIX level in December. The error sequence (εt ) is still independently normally
distributed. Boxplots (not shown) of the residuals from model (9.2) versus month do
not show any clear patterns in either the mean or the variance; hence the model now
accounts successfully for the seasonality. A comparison of models (9.1) and (9.2), using
an approximate F test (see Section 4.2), confirms that the monthly covariates are indeed
needed by the model.

Model (9.2) assumes that the residual variance is constant. Biologically, it makes more
sense to assume that there is a seasonal cycle in TRIX variability. However, the lack of
seasonal structure in the residual variances suggests that any systematic differences are
relatively small. Therefore the assumption of constant variance will be adequate for the
main purpose of this study, which is to investigate the effect of trends. Another thing to
look out for is that the monthly TRIX values are averages of different numbers of individ-
ual measurements (see Section 9.1) so that some of them are more precise than others. If
this were problematic, it could be dealt with by weighting each observation according to
its precision as in generalised least squares (GLS; see Section 3.3.3). Fortunately, differ-
ences in the precision of individual observations are not too much of a problem providing
they are not related systematically to the covariates of interest (Section 3.1.1). In this
case, there is no evidence from residual plots that the variances are related systematically
to any of the covariates in the model.

Model (9.2) also assumes independence of the residuals. However, since the data
are time series, the residuals may be autocorrelated. In fact, the sample autocorrelation
functions (not shown) of the residuals at each station show that autocorrelation is indeed
present. If we ignore this, there is a risk of erroneously concluding that covariates have a
significant effect when in fact they do not (see Section 3.1.1). The authors of this chapter
have been involved in various studies in which covariates that initially appeared to have a
significant influence upon the response variable were subsequently found to be borderline
or nonsignificant after accounting for autocorrelation. To improve the model, therefore,
we will add an error autocorrelation structure.

9.3.1 Adding autocorrelation to the additive model

Pinheiro and Bates (2000) discuss various options for incorporating a temporal auto-
correlation structure into additive or linear regression models. A model for the error
structure needs to be chosen. Possible options are the AR(1), ARMA(p, q) and com-
pound error structures (see Chapter 5). Ecological applications of different error models
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can be found in Zuur, Ieno and Smith (2007). For guidance on the choice of different
correlation structures, see Section 5.1 or Pinheiro and Bates (2000, Section 5.3). Biologi-
cal knowledge suggests that residual autocorrelation in TRIX values is unlikely to persist
for many months; the residual correlograms from model (9.2), along with the correspond-
ing partial autocorrelation functions (see Section 5.1.3), support this. Initially, therefore,
we opt for the easiest model structure: a first-order autoregressive or AR(1) structure (see
Section 3.3.3). Consequently, the correlation between two error components separated by
a lag of h time units becomes

Corr (εt , εt+h) = ρ|h|. (9.3)

The parameter ρ, which must be estimated from the data, can be interpreted as the
correlation between two successive months’ residuals.

Figures 9.7 and 9.8 show, for each station, the estimated smoothing curves for salinity
and year obtained from the additive model with an AR(1) autocorrelation structure. Note
that salinity has a negative linear relationship for nearly all stations. For station 304, there
seems to be a nonlinear salinity effect, but this is due to only a few observations with
small salinity values. For the four northern stations (4, 304, 9, 309) the smoother for year
indicates a general linear decrease of TRIX values over time, but for the other stations
there is a slight increase after the mid 1990s.

The vertical axes in Figures 9.7 and 9.8 show the contribution of the smoother to
the fitted TRIX values. Note that the range of the salinity contributions (the axis labels
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Figure 9.7 Estimated smoothing curves and pointwise 95 % uncertainty bands for the
salinity smoother for each station obtained by the additive model combining Equations
(9.2) and (9.3).
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Figure 9.8 Estimated smoothing curves and pointwise 95 % uncertainty bands for the
year smoother for each station obtained by the additive model combining Equations (9.2)
and (9.3). This smoother represents the trend at each station.

run from −1 to 1.5) is considerably larger than that of the trend (from −0.25 to 0.5).
This means that salinity has a much stronger effect on TRIX than the trend. According
to approximate F tests, all salinity relationships are significantly different from zero at
the 5 % level; for the trends, this is true for all stations except 4 and 14. The estimated
autoregressive coefficients (ρ) at the eight stations are given in Table 9.1. These are all
fairly similar except at the southernmost stations 19 and 319, where the autocorrelation
seems weaker.

Table 9.1 Estimated autoregressive coefficients in the additive model fitted separately
to data from each station.

Station 4 9 14 19 304 309 314 319
Coefficient 0.20 0.22 0.21 0.05 0.32 0.29 0.24 0.09

In case the estimated smooth functions are sensitive to the assumption of an AR(1)
correlation structure, an additional set of models has been fitted at each station using
an ARMA(1,1) correlation structure (see Section 5.1). Approximate likelihood ratio tests
were used to compare the AR(1) and ARMA(1,1) models: at each station, the null hypoth-
esis that the AR(1) structure is adequate was accepted at the 5 % level. Therefore we stick
with the AR(1) structure for the subsequent modelling.
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9.3.2 Combining the data from the eight stations

So far we have fitted additive models separately to the univariate time series from each
station, resulting in eight models. The problem with this approach is that it ignores any
structure that is shared between stations. To take advantage of any common structure that
may be present, it may be beneficial to fit a single model to the data from all stations
simultaneously. In this case, we will write TRIXst to denote the TRIX at station s and
time t .

Whenever models are fitted simultaneously to data from several stations, the residuals
are likely to be correlated both in space and time. The implications of ignoring spatial (i.e.
interstation) dependence are the same as those of ignoring temporal autocorrelation: effects
can appear significant when in fact they are not. Thus it is important to account for possible
interstation correlations. One way to do this is to specify a spatial correlation structure (for
alternatives see Section 6.1, Chapter 8 of the present volume and Bowman, Giannitrapani
and Scott, 2009). Figure 9.9 shows, for each pair of stations, the correlations between
the residuals from the final additive models of the previous section, plotted as a function
of interstation distance. Interstation correlation is clearly present, so we need to find a
plausible correlation structure. One of the simplest such structures is the exponential:

Corr
(
εts1 , εts2

) = exp
(−ds1,s2/ψ

)
,

where ds1,s2 denotes the distance between stations s1 and s2. The dashed line in Figure 9.9
shows the fit of this model to the observed residual correlations. The fit is poor, over-
estimating the correlations at small spatial lags and underestimating at large lags. This
suggests that there may be a nugget effect (Webster and Oliver, 2001, Section 6.1), due
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Figure 9.9 Interstation residual correlations for the additive model combining Equations
(9.2) and (9.3), plotted against interstation distances (units are effectively degrees of lati-
tude). Points represent the observed values; lines correspond to fitted correlation models.



320 CASE STUDIES

either to measurement error or to fine-scale spatial TRIX variation. In this case, a better
model for the spatial correlation structure would be

Corr
(
εts1 , εts2

) = λ exp
(−ds1,s2/ψ

)
(9.4)

for some λ ∈ (0, 1). The solid line in Figure 9.9 shows the fit of this model, which
seems reasonable. For the remainder of this section, therefore, we represent interstation
dependence using an exponential correlation structure with a nugget effect.

The need to account for both spatial and temporal correlation causes a problem,
because the mgcv library does not currently handle this (the correlation structures available
are those provided by the nlme library of Pinheiro et al., 2008). A solution is to account
for the temporal correlation by including lagged TRIX values as additional covariates in
the model. Note that this is directly equivalent to specifying an autoregressive correlation
structure at each station, although now we need to be careful when interpreting the other
model components (see Section 3.3.3).

To come up with a sensible model for TRIX at all stations simultaneously, it is helpful
to try and separate model components that are likely to vary between stations from those
that are likely to be the same. The exploratory analysis, together with the results from
fitting models separately at each station, suggests that the salinity and trend effects may
be station-dependent, along with the seasonal cycle. However, for the additive models
with AR(1) correlation structures, all of the residual variance estimates were between
0.18 and 0.21, with the exception of station 309 for which the value is 0.16. Thus the
residual variances appear approximately the same for all stations; this is consistent with
the informal conclusions, reported above, from the analysis of residuals from model (9.2).
Similarly, the AR(1) correlation parameters in Table 9.1 are fairly similar at all except
the two southern stations.

Combining all of these considerations, a possible multistation model for TRIX is

TRIXst = αs + f1,s (t) + f2,s

(
Salinityst

) +
11∑

j=1

γsjmjt + φTRIXs(t−1) + εst , (9.5)

where εst ∼ N(0, σ 2) and Corr
(
εs1t , εs2t

) = λ exp
(−ds1,s2/ψ

)
. However, this model has

16 smoothing functions: it can be simplified (and hence the computational load can
be reduced) by using the results from the previous section, which showed that the
salinity–TRIX relationship is effectively linear at all stations so that the salinity effect
can be represented parametrically:

TRIXst = αs + f1,s (t) + (
βs × Salinityst

) +
11∑

j=1

γsjmjt + φTRIXs(t−1) + εst . (9.6)

This model contains ‘only’ eight smoothing curves, which reduces the computational
burden. Nonetheless, it still contains a large number of parameters because there are 11
monthly coefficients {γsj : j = 1, . . . , 11} at each of the eight stations. It may be more
economical to use a circular smoother (see Section 4.2) to represent the seasonal structure:

TRIXst = αs + f1,s (t) + (
βs × Salinityst

)
+ f3,s (Montht ) + φTRIXs(t−1) + εst , (9.7)

where ‘Montht ’ is the month number (1 to 12) corresponding to time t .
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A comparison of models (9.6) and (9.7), using an approximate likelihood ratio test,
suggests that the seasonal effect can be represented as a smooth function with between
3 and 5 effective degrees of freedom at each station (see Section 4.1.4 for a discussion
of effective degrees of freedom in smoothing models). This saves about 52 degrees of
freedom in total. With the smoothing parameters chosen by cross-validation, model (9.7)
contains 62.4 effective degrees of freedom and yields a log-likelihood of −1679.2.

At this point the advantage of fitting an additive model simultaneously to all data
becomes apparent: we can look at the various terms in model (9.7) and see how they
change from station to station. In particular, we can simplify the model by assuming, for
example, that the salinity effect is the same at all stations. If we do this and retain the
same error structure, the simplified models will be nested within (i.e. can be obtained as
special cases of) model (9.7). Therefore likelihood ratio tests can be used to determine
whether the simplifications are justified. When doing this, however, we should remember
that currently available tests for comparing smoothing models are approximate at best
(see Section 4.2). This means that we have to exercise an element of judgement when
interpreting the test results.

The first simplification we try is to see whether the salinity effect is the same at all sta-
tions. This is done by fitting model (9.7) without any salinity–station interactions, i.e. in
which the coefficients β1, . . . , β8 are replaced by a single salinity coefficient β. The result-
ing model has 38.9 effective degrees of freedom and a log-likelihood of −1776.8. The
likelihood ratio statistic (see Section 3.5.2) is therefore 2 × (−1679.2 + 1776.8) = 195.3.
Compared with a chi-squared distribution on 62.4 − 38.9 = 23.5 degrees of freedom, this
yields a p-value well below 10−4. Even allowing for the approximate nature of the test,
this shows strong evidence that the TRIX–salinity relationship differs between stations
(or at least for some stations). The mean of the estimated slopes {βs} is −0.084 and
is significiantly different from zero at the 0.1 % level. The individual slopes show that
the TRIX–salinity relationship becomes stronger (more negative) as one moves from
northwest to southeast: this is consistent with the earlier exploratory analysis.

Next we look to see whether station-specific seasonal effects are needed. Fitting a
model with a common seasonal component yields a log-likelihood of −1733.2, with 34.4
effective degrees of freedom. Comparing this with model (9.7) yields a likelihood ratio
statistic of 108.1 on 28 degrees of freedom: once again, this provides convincing evidence
that the seasonal cycle varies between stations.

Interestingly, the degrees of freedom chosen using cross-validation for the trend
smoothers f1,1(·), . . . , f1,8 are all equal to 1: the estimated trends are all linear. This
suggests that we could switch to a parametric representation of the trends as well as the
salinity. However, for the moment we stick with the nonparametric analysis. The last
question we address here is whether we actually need the interaction between the trends
and stations or whether one smoother will do the job. We will therefore compare model
(9.7) with the following model:

TRIXst = αs + f1 (t) + (
βs × Salinityst

)
+ f3,s (Montht ) + φTRIXs(t−1) + εst . (9.8)

Note that in model (9.8) there is only one trend whereas (9.7) has eight trends. The
likelihood ratio statistic for comparing the models is 23.73 on 5.8 effective degrees of
freedom, yielding an approximate p-value of 0.0005. This suggests that the trends do
indeed vary between stations.



322 CASE STUDIES

So, is model (9.7) our final model? With 62.4 effective degrees of freedom it is quite
complex, even if it does describe the variation of TRIX at eight locations simultaneously.
One possible simplification is to try and estimate common trends within ‘similar’ groups
of stations. In the earlier station-specific analysis, the shape of the trends in Figure 9.8
indicated that there may be north–south and inshore–offshore differences. This could be
due to dilution of nutrients from the river input due to currents. To investigate this we
try fitting a model with four different smoothers for the trend so that the site pairs (4, 9),
(304, 309), (14, 19), (314, 319) each share a common trend. This is again a special case
of (9.7). The likelihood ratio statistic is 1.5 on 4.1 effective degrees of freedom, leading
to an approximate p-value of 0.84. Therefore this simplification is justified, suggesting
that the stations can be subdivided into four pairs as far as trends are concerned.

The estimated trends for the four pairs of stations are given in Figure 9.10. Note that
all are linear, with the strongest trends in the north: the estimated trends for the southern
stations do not differ significantly from zero. When interpreting these trends, it should
be remembered that the model also includes lagged TRIX values so that the modelled
trends do not correspond to the actual change in TRIX over time. However, since the
modelled trends are linear, the corresponding changes in TRIX are also linear (see Section
3.3.3). Moreover, the temporal correlation is relatively weak (the regression coefficient
for the lagged TRIX value is 0.11) so that the trends displayed in Figure 9.10 provide a
reasonable representation of overall change.
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Figure 9.10 Estimated temporal trends for four pairs of stations. ‘Northern’ stations are
numbers 4, 9, 304 and 309; ‘inshore’ stations are numbers 4, 9, 14 and 19.
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9.3.3 Doing it all within a parametric model

Possible criticisms of the nonparametric approach of the previous section are firstly that
graphs are needed to visualise the covariate effects, and secondly that model comparison
is difficult. However, the results above suggest that both the trend and salinity effects are
linear and that the seasonal effects can be modelled by a smooth function. Therefore a
possible solution is to switch to a parametric framework, using generalised least squares
(GLS) to account for correlation and potential changes in variance (which were not inves-
tigated in the previous section). To represent the smoothly varying seasonal cycle within a
parametric framework, we can use a Fourier representation (see Section 3.2.1): since the
seasonal smooths in the nonparametric model all had fewer than 6 effective degrees of
freedom, it seems reasonable to consider sine and cosine components with cycle lengths
of 12 months, 6 months and 4 months. We can also allow for possible nonlinear trends
by including quadratic functions of time in the model. However, if we use t and t2 as
covariates then we will encounter collinearity: to avoid this it is advisable to centre the
time index as t̃ = t − t̄ , say, where t̄ is the centre of the observation period, and then to
work with covariates t̃ and t̃2. This suggests the following parametric model (note that
the coefficient notation differs from the previous section):

TRIXst = αs +
3∑

j=1

[
β1js cos

(
2πj × Montht

12

)
+ β2js sin

(
2π × Montht

12

)]

+ γ1s t̃ + γ2s t̃
2 + (

γ3s × Salinityst

) + φTRIXs(t−1) + εst . (9.9)

As before, we can allow for autocorrelation in the errors and investigate similarities and
differences between stations by fitting simplified versions of model (9.9) and carrying
out likelihood ratio tests. However, the computing time is considerably less than for
the additive models of the previous section. This provides the opportunity to explore
the model structure in more detail: in particular, we can look for an optimal model in
terms both of error structure and of the covariates (t̃ , t̃2, salinity, seasonal components
and interactions).

As far as the error structure is concerned, we have not yet formally addressed the
question of whether the error variance is the same for all sites and months. While answer-
ing questions about the random components of a model, it is general practice to include as
many covariates as possible: once an optimal model for the random components has been
identified, the systematic part of the model (i.e. covariate structure) can be explored in
more detail (Fitzmaurice, Laird and Ware, 2004). Likelihood based comparisons of differ-
ent structures for the random component, but with the same covariates, require restricted
maximum likelihood (REML) estimation – see Section 6.1. In contrast, comparisons of
models with the same structure for the random components, but with different covariates,
require maximum likelihood estimation (Pinheiro and Bates, 2000).

We first fit model (9.9) with the spatial autocorrelation structure (9.4) on the errors,
and then a model in which we also allow different variances at each station. So instead
of assuming that εst ∼ N(0, σ 2) we use εst ∼ N(0, σ 2

s ) for s = 1, . . . , 8. As these mod-
els are nested (the second is an extension of the first), a likelihood ratio test can be
applied. Results indicate no evidence to reject the null hypothesis that residuals have the
same spread at each station (p = 0.39). We next fit a model in which each month is
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allowed to have a different variance: the likelihood ratio test indicates a significant model
improvement (p = 0.012). Hence, the residual variability differs by month, but not by
station. A likelihood ratio test also confirms that the interstation correlation structure is
required (p < 0.001). So, the optimal model in terms of error structure contains intersta-
tion correlations and different variances per month. We can now change the estimation
method to maximum likelihood and determine the optimal set of fixed covariates. The
results suggest that all of the covariates in (9.9) are significant (taking the seasonal sine
and cosine terms as a single group) and that, with the exception of the nonlinear trend
component t̃2, all effects vary between stations. This is essentially the same conclusion
as for the nonparametric analysis: however, the parametric model has also revealed the
seasonal changes in residual variation and suggests some nonlinearity in the trend that was
not apparent from the simultaneous nonparametric model fit (although the nonparametric
fits at individual stations did suggest some nonlinearity of this type).

9.4 Dynamic factor analysis to estimate common trends

The additive modelling in the previous section showed that the eight TRIX time series
exhibit (a) mildly nonlinear long-term trends, (b) a linear relationship with salinity and
(c) a seasonal pattern. The trends vary between stations and are strongest in the north.
We now use dynamic factor analysis (DFA) as an alternative way to estimate common
trends and effects of covariates.

9.4.1 The underlying model

DFA is closely related to the Kalman filter and smoother, in particular using random
walks to represent trends (see Section 5.5). Mathematical details can be found in Zuur,
Tuck and Bailey (2003) and Zuur et al. (2003); see also Shumway and Stoffer (1982,
2000) or Harvey (1989) for a full discussion of the model formulation. Other forms of
DFA exist (Mendelssohn and Schwing, 2002; Molenaar, 1985) but are not discussed here.
DFA models the eight TRIX time series as a function of M common trends and effects of
covariates (salinity and month). In addition, interstation residual correlation is allowed.

In the additive modelling above we used station-specific salinity series as covariates
for TRIX. However, although the DFA model in principle allows more than one continuous
covariate, due to software restrictions we are only able to use one such covariate in this
study. Therefore we use the average salinity value at all stations as a covariate in the DFA.
This should not be too much of a problem, because the results from the data exploration
and additive models show that most salinity series are highly correlated with each other
and have similar effects on TRIX.

The mathematical notation used in this section is slightly different from the previous
section. Let yt be a vector containing the eight TRIX values in the t th month of the record
and let xt be a corresponding vector of covariates. The DFA model is given by the pair
of equations

yt = μ + Azt + βx t + εt (9.10)

and
zt = zt−1 + ηt . (9.11)

The easiest way to explain this model is if only one common trend (M = 1) is used. In
this case, zt is a scalar and represents a random walk trend: zt = zt−1 + ηt . The error
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term ηt is normally distributed with expectation zero and variance σ 2
η . For small values

of this variance, the trend (zt ) evolves quite smoothly but larger values produce more
wiggly curves. For the TRIX series with station-averaged salinity as a single covariate, if
M = 1 then (9.10) becomes⎛

⎜⎜⎜⎝
TRIX1t

TRIX2t

...

TRIX8t

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

μ1

μ2
...

μ8

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

a1

a2
...

a8

⎞
⎟⎟⎟⎠ zt +

⎛
⎜⎜⎜⎝

β1

β2
...

β8

⎞
⎟⎟⎟⎠ Salinityt +

⎛
⎜⎜⎜⎝

ε1

ε2
...

ε8

⎞
⎟⎟⎟⎠ . (9.12)

Each TRIX time series (yst ) is modelled as an intercept μs (as in linear regression)
along with contributions from the trend, salinity and noise. The trend affects each station
differently according to the factor loadings {as}. Similarly, the effect of the univariate
salinity variable is station-specific and is modelled as in linear regression. The noise
vector εt is assumed to be normally distributed with expectation 0 and covariance matrix
H . The trend (zt ) represents the common information in the TRIX time series that is
not already explained by salinity. A high value of the factor loading as indicates that the
trend is important for the TRIX at station s, whereas if as is close to zero the trend is
not important at this station. A negative factor loading means that the contribution of the
trend to the fitted values is opposite to the trend pattern. To simplify the interpretation of
the factor loadings it is useful to standardise the TRIX time series.

What happens if there are two common trends (M = 2)? The random walk model
(9.11) becomes zt = zt−1 + ηt , where zt = (z1t , z2t )

′, and (9.10) is identical to (9.12)
except that the second term on the right-hand side becomes

⎛
⎜⎜⎜⎝

a11 a12

a21 a22
...

...

a81 a82

⎞
⎟⎟⎟⎠

(
z1t

z2t

)
= Azt .

The 8 × 2 matrix A contains the factor loadings, the magnitudes of which indicate whether
each individual TRIX series is related to either, both or neither of the two trends. To choose
between models with different numbers of trends or covariates, Akaike’s Information
Criterion (AIC) can be used (see Section 3.2.3). It is a combined measure of goodness
of fit and model complexity, and its definition for the DFA model is given in Zuur, Tuck
and Bailey (2003) and Zuur et al. (2003).

Finally, we discuss the error covariance matrix H . Two options used in Zuur, Tuck
and Bailey (2003) and Zuur et al. (2003) are a diagonal matrix with different variances
and an unstructured covariance matrix with nonzero off-diagonal elements. Under the first
option, the residuals at different stations are assumed to be uncorrelated with each other
but the nondiagonal option allows dependence between stations. The price to be paid for
this is an increase in the number of parameters to be estimated, although the structure
could in principle be simplified (and the number of parameters reduced) by using a spatial
correlation model such as (9.4).

Just as in linear regression models, seasonal patterns can be included using a cate-
gorical ‘month’ variable. In this case the model becomes

yt = μ + Azt + βxt +
11∑

j=1

γ jmjt + εt ,
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where the dummy variable mjt is defined as in Section 9.3 and γ j is a regression parameter
vector of dimension 8 × 1, allowing for a different month effect at each station.

Various DFA models with different sets of covariates have been fitted. Table 9.2 shows
a selection of these, with their AIC values. In addition to the models shown, we fitted
models with a nondiagonal covariance matrix H and only salinity as covariate. How-
ever, numerical problems were encountered in the estimation of these models, probably
because the shared seasonality in the TRIX series was interpreted as very high interstation
correlation, which led to a singular covariance matrix H .

In the models with no covariates and one common trend (M = 1) the ‘trend’ estimates
correspond to the seasonal cycle: all stations are related to this because all TRIX series
show strong seasonality. The AICs in Table 9.2 clearly show that the best models are those
with (a) month and salinity as covariates, (b) a nondiagonal error covariance matrix and
(c) M = 1 or M = 2 common trends. The difference in the AIC between these two models
is rather small (3342.5 versus 3341.6) and the choice as to which one should be presented
should be based on (a) biological interpretation and (b) a model validation. In the model
with M = 2, the factor loadings for the second common trend were considerably smaller
than those for the first trend. This indicates that the second trend is considerably less
important. Moreover, the model validation (plots of residuals versus time, histograms,
quantile–quantile plots and other model validation tools) gave no reason to prefer the
second model (M = 2) above that of the first (M = 1). Therefore we present the model
with one common trend below.

Table 9.2 DFA models fitted to the TRIX series. M stands for the number of
common trends and H is the error covariance matrix. The lower the AIC, the
better the model.

H diagonal H nondiagonal

M Covariates AIC M Covariates AIC

1 – 4035.5 1 – 3691.4
2 – 3814.3 2 – 3685.3
3 – 3817.8 3 – 3682.3

4 – 3692.9
1 Month 3829.1 1 Month 3490.0
2 Month 3708.8 2 Month 3492.3
3 Month 3709.8
1 Month and Salinity 3765.7 1 Month and Salinity 3342.5
2 Month and Salinity 3653.6 2 Month and Salinity 3341.6
3 Month and Salinity 3657.0 3 Month and Salinity 3354.2

The estimated trend is presented in Figure 9.11(a). The first year of the trend should
be interpreted with care, as there were many missing values. Nevertheless, it is clear
that there is a general decrease during the 1980s and early 1990s, followed by a stable
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Figure 9.11 Results from DFA using only one common trend: (a) estimated trend (solid
line) and 95 % confidence bands, (b) factor loadings for each station corresponding to the
trend in (a).

period of minor changes. However, for which station(s) is this trend important? The factor
loadings in Figure 9.11(b) show that it mainly affects the northern four stations (4, 304,
9 and 309).

The error covariance matrix H can either be presented in a table or visualised
by converting to a correlation matrix and then using metric multidimensional scaling
(MDS) to show which stations have similar residual patterns. MDS (Everitt and Dunn,
2001; Zuur, Ieno and Smith, 2007) is a multivariate technique that takes a set of dis-
similarities and returns a set of points such that the distances between the points are
approximately equal to the dissimilarities. In our case, the dissimilarities are calculated
by subtracting the interstation correlations from 1: thus two stations with perfect cor-
relation will have zero dissimilarity. Figure 9.12 shows the MDS ordination. The first
axis represents 38 % of the variation and is twice as important as the second axis. Note
that there is a clear grouping of stations along the first axis: stations 4, 304, 14 and 314
versus stations 9, 309, 19 and 319. Hence, there is a certain degree of structure in the
unexplained variation.

The regression parameters for salinity are presented in Table 9.3. Note that all slopes
are negative and significantly different from zero at the 5 % level. This is consistent with
the results from the additive modelling exercise previously; however, the DFA results
suggest, if anything, that the salinity–TRIX relationships are weaker at the southern
stations whereas before they appeared stronger there.
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Figure 9.12 MDS ordination of the error covariance matrix H , after conversion to a
correlation matrix. The numbers in the graph refer to the stations. Stations with similar
residual patterns appear close to each other on this plot.

Table 9.3 Estimated regression coefficients {βs} for salinity in
model (9.12) fitted to the TRIX series.

Station Estimated slope Standard error t-value

4 −0.20 0.02 −12.14
304 −0.20 0.02 −11.75

9 −0.14 0.01 −9.74
309 −0.17 0.01 −12.96
14 −0.16 0.02 −9.23

314 −0.15 0.01 −10.14
19 −0.12 0.01 −8.08

319 −0.11 0.01 −7.63

9.5 Discussion

In this chapter we have used two rather different modelling approaches to investigate
trends in eutrophication, as measured using TRIX, along the coast of the Emilia-Romagna
region. Additive modelling indicates an overall seasonal pattern, a salinity effect and, for
the four northern stations, a decreasing temporal trend. The decrease from the early
1990s is consistent with a nutrient reduction policy that comprised mainly the elimination
of phosphorus from detergents and, where possible, the introduction of fertirrigation,
lagoonage and wastewater treatment by phytodepuration (for an overview of some of the
measures that have been taken, see De Wit and and Bendoricchio, 2001, and references
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therein). Further improvements within the additive model allow for different variances in
each month (as suggested by the GLS), although this conclusion is not immediately clear
from the additive model residual plots.

The DFA also shows a salinity and month effect, along with a single common trend
that once again indicates a decrease in TRIX values everywhere except at the southernmost
stations 19 and 319. The DFA trend estimate is less smooth than that from the additive
model, indicating a decrease between the mid 1980s and early 1990s and then a period
of stability.

In the literature, DFA has been applied to various ecological data sets. In some of
these publications, the length of the time series were rather short. For example, Chen
et al. (2006) used annual squid time series of length 12–14 years. They found that slightly
different results were obtained if the DFA model was refitted with different starting values
for the parameters, and compromised by presenting average AIC values from five DFA
runs. Zuur and Pierce (2004) used 24 time series of 20–25 years and found that the
numerical algorithm for parameter estimation converged rather slowly due to the large
number of parameters in the model. Hence, care is required if DFA is applied to time series
with relatively few observations. In the present example, however, there were relatively
few time series with few missing values and the series were all considerably longer than
in the cited references. The AIC values, regression parameters, error covariances and
other numerical parameters were identical up to the third digit for multiple DFA runs
with different starting values.

The main advantage of the additive modelling approach is that the user gains a much
greater insight into the structure of the data than is possible with DFA. However, more
time and expertise is required to interpret the additional numerical output and, moreover,
the DFA is more capable of detecting rapid changes due to the random walk representation
of the trend. This fundamental difference in trend representations – the one as a smooth
function of time with autocorrelated errors and the other as a random walk – should be
kept in mind when considering the differences between the modelling results above. In
qualitative terms, however, the two sets of conclusions are similar.

Building on analyses such as those reported above, an additional possibility is to
use the modelling results to improve the sampling effort. Zuur, Ieno and Smith (2007,
Chapter 20) showed how an additive model can be used to obtain some insight into
required sample sizes, and similar ideas could also be adopted within both of the frame-
works presented in this chapter.
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10.1 Forest health: survey and data

Vital forests play an important role in the ecosystem due to their regulatory impact on both
the climate and the water cycle. However, a prerequisite for these balancing functions is
a sufficiently healthy forest. In this case study, we will analyse longitudinal data on forest
health to identify potential factors influencing the health status of trees. In addition to
covariates characterising a tree and its stand, the exact locations of the trees are known,
and we will make use of this spatial information. Therefore this case study will focus on
detecting temporal and spatial trends while accounting for further covariate effects in a
flexible manner.

Our data have been collected in annual visual forest health inventories carried out
between 1983 and 2004 in a northern Bavarian forest district. The average health status at
83 observation plots with beeches (Fagus sylvatica) within an observation area extending
10 km from south to north and 15 km from west to east was assessed on an ordinal
scale, where the nine possible categories denote different degrees of defoliation. The
domain is divided in 12.5 % steps, ranging from healthy trees (0 % defoliation) to trees
with 100 % defoliation. Figure 10.1 shows a histogram of the nine defoliation classes
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Figure 10.1 Forest health data: histogram of the nine defoliation classes for all obser-
vation plots and all time points.

indicating that severe defoliation is relatively rare. Therefore we aggregated the data
into three categories corresponding to healthy trees (0 % defoliation, category 1), slightly
defoliated trees (between 12.5 % and 37.5 % defoliation, categories 2–4) and severely
defoliated trees (more than 37.5 % defoliation, categories 5–9).

Since the data set has a longitudinal structure consisting of 83 time series of defo-
liation states for the 83 observation plots, temporal correlations have to be considered
appropriately. In addition, the trees are located within a relatively small observation area
and spatial correlations due to comparable climate and site conditions are also likely to
be encountered. Figure 10.2 shows the temporal development of the frequency of the
three different defoliation states. Obviously, only a small percentage of the observation
plots falls into the class with the highest defoliation degree. However, there seems to be
a slightly increasing trend for this category. The lowest percentage of healthy trees is
observed at the end of the 1980s. Afterwards, the population seems to recover, stabilis-
ing at a percentage of approximately 60 % of healthy trees in the 1990s. All trends are
relatively rough due to random variation in the data. Using a (nonparametric) regression
model to estimate the trends allows the observation noise to be reduced, leading to more
reliable estimates for the trends; it also controls for the effects of further covariates.

Figure 10.3 shows the distribution of the plots across the observation area. Each box
corresponds to a specific observation plot and is shaded according to the percentage of
years for which the trees were classified to show slight (light boxes) or severe (dark boxes)
defoliation. Around Rothenbuch (the hole in the easterly part of the observation area)
there seems to be an increased amount of defoliated trees. Employing spatial smoothing
techniques will allow us to obtain clearer spatial patterns of healthy and defoliated trees
and to estimate the spatial trend jointly with further covariate effects.
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Figure 10.2 Forest health data: temporal development of the frequency of the three
different defoliation states.
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Figure 10.3 Forest health data: percentage of years for which an observation plot shows
defoliation, averaged over the entire observation period.
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Table 10.1 Forest health data: description of covariates.

Covariate Description Type Range/coding

Age Age of stand (years) Con [7, 234]
Elevation Elevation (metres above sea level) Con [250, 480]
Inclination Slope inclination (percent) Con [0, 46]
Soil Soil layer depth (cm) Con [9, 51]
pH Soil pH at 0-2cm depth Con [3.28, 6.05]
Canopy Forest canopy density (%) Con [0, 1]
Stand Stand type Ca(2) 1 = ‘deciduous’,

−1 = ‘mixed’
Fertilised Fertilisation applied? Ca(2) 1 = ‘yes’, −1 = ‘no’
Humus Humus layer thickness Or(5) 1 = ‘low’ to 5 = ‘high’
Moisture Soil moisture level Or(3) 1 = ‘moderately dry’,

2 = ‘moderately moist’,
3 = ‘moist or
temporarily wet’

Saturation Base saturation Or(4) 1 = ‘low’ to 4 = ‘high’

Key to ‘Type’ column: Con = continuous, Ca(n) = categorical with n categories,
Or(n) = ordinal with n categories.

In addition to temporal and spatial information, numerous other covariates character-
ising the stand and the site are available. Table 10.1 contains covariates that either turned
out to be significant in preliminary analyses or are of interest for substantive research
questions. The set of covariates comprises both categorical and continuous covariates that
have to be considered appropriately.

For example, Figure 10.4 displays the temporal development of the proportion
of observation plots with defoliation for young trees (age≤75), middle-aged trees
(75<age≤150) and old trees (age>150). Obviously, the three resulting time trends share
some common features, e.g. the peak at the end of the 1980s, but there is also a clear
evidence of a time-varying difference between the trends. To account for this, we have to
include appropriate interaction terms between age and calendar time, e.g. by categorising
the trees into three age groups and estimating time trends for each group separately.
However, a drawback of this approach is the arbitrary definition of the age groups. In
addition, employing a large number of age classes to obtain a realistic model may lead
to unstable estimates for the trends. Therefore, a more sophisticated idea is to introduce
a flexible interaction surface between age and calendar time. Similarly, nonparametric
main effects of other covariates may be needed to obtain a realistic model.

10.2 Regression models for longitudinal data
with ordinal responses

This section briefly describes three basic concepts that allow extensions of ordinal response
models for cross-sectional data to a longitudinal setting. These are marginal models based
on estimating equations, autoregressive-type transition models and random effects models.
For notational simplicity, and in accordance with the data structure of the forest health
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Figure 10.4 Forest health data: temporal development of the proportion of observation
plots with defoliation for young trees (age≤75), middle-aged trees (75<age≤150) and old
trees (age>150).

study, we assume that ordinal responses Yit are observed for i = 1, . . . , n objects for the
same time points or periods t = 1, . . . , T , together with covariates. However, extensions
to more general longitudinal data structures are of course possible.

Regression models for ordinal response variables are most easily defined based on
continuous latent variables. In our specific application, a latent variable can be thought
of as representing the true but unknown defoliation degree Dit (or more generally health
state) of tree i at time t measured on a continuous scale. As in usual linear models, Dit

can then be related to covariates xit to form a linear predictor x ′
it β through

Dit = x ′
it β + εit . (10.1)

Keeping t fixed for the moment, εit are i.i.d. random error terms with a cumulative
distribution function F . In a second step, the latent variable is linked to the categorical
response variable based on a set of ordered thresholds

−∞ = θ(0) < θ(1) < · · · < θ(k) = ∞.

These thresholds divide the real axis into k slices, and an observation is assigned to the
class corresponding to its latent defoliation degree Dit via the threshold mechanism

Yit = r ⇔ θ(r−1) < Dit ≤ θ(r). (10.2)

Figure 10.5 gives an intuitive interpretation of the latent variable representation
of cumulative regression models. Suppose that f = F ′ is the density of εit . Then the
distribution of Dit follows the same density shifted by x ′

it β and the regression coeffi-
cients β determine the direction and strength of the shift caused by a specific covariate
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Figure 10.5 Interpretation of cumulative regression models: the linear predictor x ′
it β

shifts the density of Dit . The shaded region denotes the probability P(Yit = 2) for an
observation plot to be classified as being slightly defoliated.

combination xit . This is illustrated for two different values of x ′
it β in Figure 10.5. The

probability for a specific category r is obtained by splitting the density at the thresholds.
As an example, the probability for category r = 2 is shaded in grey. Obviously, increasing
the shift reduces the probability for a low category and conversely increases the proba-
bility for higher categories. Hence, positive regression coefficients are associated with a
negative influence of the corresponding covariate on forest health in our example.

From (10.2), cumulative probabilities of Yit can be easily obtained as

P(Yit ≤ r) = P(εit ≤ θ(r) − x ′
it β) = F(θ(r) − x ′

it β), r = 1, . . . , k. (10.3)

Hence the model defines cumulative probabilities, and is therefore usually called a cumu-
lative regression model. Choosing a specific distribution for εit completes the model
formulation. Popular variants are the logistic distribution or the standard normal distribu-
tion resulting in the cumulative logit and the cumulative probit model respectively. In the
following, we will employ cumulative probit models but, as for binary responses, results
obtained from logit and probit models are usually quite close to each other; see Fahrmeir
and Tutz (2001, Chapters 2 and 3).

Three concepts may be distinguished for extending the basic cross-sectional model
(10.3) to longitudinal data. The choice between them depends on the data structure and
on the objectives of the study.

Marginal models are mostly used when longitudinal data consist of many short indi-
vidual time series, i.e. for large n and very small T , and when the marginal effect of
covariates on the response is of primary interest, whereas temporal correlation and time
trends are of secondary interest (or even considered as nuisance components). Infer-
ence is usually based on a generalised estimating equations (GEE) approach, introduced
by Liang and Zeger (1986) and Zeger and Liang (1986) for univariate, for example
binary, responses. GEEs associate the seemingly separate marginal models (10.3) for
t = 1, . . . , T , through working correlations. Marginal models have been extended in var-
ious ways, in particular to categorical responses and to likelihood based models; see the
book by Diggle et al. (2002). Because T is comparably large in our study and we aim
at modelling and exploring temporal and spatial trends in the forest health data, marginal
models are less appropriate. Also, our inferential concept is based on full likelihoods,
whereas GEEs usually specify only first and second moments.
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Conditional models introduce temporal correlation by including lagged values of the
response variables in the predictor, i.e. by considering autoregressive models of the form

Dit = x ′
it β + αYi,t−1 + εit . (10.4)

In addition, interactions between the lagged variable Yi,t−1 and other covariates may be
considered or lags of higher order could be included. Conditional models of the form
(10.4) induce Markov-type transition probabilities for the transition between Yi,t−1 and
Yit . In contrast to simple Markov models, the transition probabilities additionally depend
on covariates. Although conditional models can be easily fitted using standard software,
they have the innate problem that covariate effects may be hidden by the autoregressive
part of the model. Since Yi,t−1 depends on essentially the same covariate information as
Yit , covariates may turn out to be insignificant in a conditional model although they are
important to describe marginal properties of Yit . In addition, the marginal expectation of
Dit defined implicitly in Equation (10.4) is given by

E(Dit ) =
(

t−1∑
s=0

αsx ′
is

)
β,

which is difficult to interpret (see Section 3.3.3 for further discussion of this issue).
Therefore conditional models are well suited if prediction is of primary interest, but not
the marginal expectation. On the other hand, they can also be applied if n is small and T

is large. For the objectives of the forest health study, they are less useful because we are
interested in detection of covariate effects and trends but not in prediction.

Mixed models induce temporal correlation by additional inclusion of random effects
into the predictor of the linear model (10.1) and, as a consequence, into the predictor of
the basic model (10.3). Generally, the standard form of a linear mixed model for (latent)
longitudinal data is

Dit = x ′
it β + z′

it bi + εit , (10.5)

where zit is a design vector constructed from covariates, for example a subvector of xit .
The individual (plot-) specific random vectors bi are i.i.d. Gaussian, bi ∼ N(0, Q). In the
simplest case zit = 1, the model contains a random intercept only. Rewriting the linear
mixed model as

Dit = x ′
it β + δit , δit = z′

it bi + εit ,

it is seen that the marginal expectation (i.e. integrating out the random effects bi) is still
of simple linear parametric form.

It is obviously difficult to model nonlinear time trends as in Figure 10.2 using simple
parametric functions. Moreover, some effects of continuous covariates may be nonlinear
too. To deal with this issue, all three basic types of longitudinal data models have been
extended to incorporate additive nonparametric functions in a generalised additive model
fashion; see, for example, Wild and Yee (1996) for additive extensions of GEE-based
models, Lin and Zhang (1999) for additive mixed models and Sections 6.2 and 7.6 in
Fahrmeir and Tutz (2001).

Mixed models are particularly attractive for flexible semiparametric approaches as
needed for our health study. Temporal and spatial trends as well as nonparametric func-
tions of continuous covariates can be incorporated through additional random effects,
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which are serially or spatially correlated, and inference can be performed within a unified
framework. The next section suggests a broad class of spatiotemporal models through
such an approach.

10.3 Spatiotemporal models

Random effects models allow for some specific types of correlation of the latent variables,
but were mainly developed to account for the dependencies arising from unobserved
heterogeneity in the data. In our example, the dependence structure is more complicated,
since temporal and spatial correlations induced by a combination of unobserved covariates
have to be considered. Furthermore, the assumption of purely parametric covariate effects
may be too restrictive, and more general models allowing for flexible, nonlinear effects
may be able to account for this. In the following, we will generalise the parametric models
for ordinal responses to a general class of spatiotemporal or geoadditive regression models
that allows for spatial and temporal correlations as well as nonlinear effects of covariates
and unobserved heterogeneity.

Conceptually, the basic form of such a model has the form

Dit = f1(vit1) + · · · + fp(vitp) + ftime(t) + fspat(si) + x ′
it β + εit , (10.6)

where f1(vit1), . . . , fp(vitp) are nonlinear effects of continuous covariates, ftime(t) is
a flexible time trend accounting for temporal correlations, fspat(si) is a spatial effect
accounting for spatial correlations and x ′

it β comprises all further covariates with para-
metric effects in appropriate coding. Extended versions may be obtained by including
tree-specific random intercepts (or slopes)

Dit = · · · + bi + · · ·

as in the linear mixed model (10.5) or interactions between some of the covariates

Dit = · · · + fjk(vitj , vitk) + · · ·

Tree-specific random intercepts can also be interpreted as an unstructured spatial effect
that accounts for unobserved, locally varying covariates. In the geostatistical terminology,
such a random effect would be called a nugget effect.

Both temporal and nonparametric effects can be estimated based on penalised
splines; see Section 10.3.1 for details. Two-dimensional extensions of penalised splines
can be employed both for the estimation of interaction surfaces and spatial effects;
see Section 10.3.2. Competing methods for the latter are Markov random fields, and
stationary Gaussian random fields, as described in Section 10.3.3.

In our specific application, a suitable model is given by

Dit = f1(ageit ) + f2(inclinationi ) + f3(canopyit ) + ftime(t)

+ f4(t, ageit ) + fspat(si ) + bi + x ′
it β + εit . (10.7)

Both temporal and spatial correlations are included as well as nonlinear effects of age,
inclination of slope and the canopy density. These continuous covariates were identified
in preliminary analysis as covariates with potentially nonlinear influence on the response.
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In addition, the age effect is allowed to be time-varying, i.e. an interaction between the
calendar time t and age is included in the model. The random intercept bi accounts for
tree-or location-specific heterogeneity.

10.3.1 Penalised splines

An approach to the estimation of nonparametric effects of continuous covariates and time
trends that is both parsimonious and flexible was proposed by Eilers and Marx (1996).
Their idea is based on a basis function representation of functions f (v); i.e. f (v) is
written as a weighted sum of basis functions Bm(v):

f (v) =
d∑

m=1

ξmBm(v),

where ξ = (ξ1, . . . , ξd )
′ corresponds to a vector of unknown regression coefficients. The

specific basis functions chosen by Eilers and Marx (1996) are B-splines of degree l.
Each of the basis functions is constructed as a combination of piecewise polynomials
of degree l, which are connected in a way that ensures that Bm(v) is (l − 1) times
continuously differentiable (see Dierckx, 1993, for a formal definition of B-splines and
rigorous developments of their properties). B-splines form a numerically stable basis with
local support, resulting in mathematically favourable properties. As in Section 4.1.3, the
points at which the splines are connected are called knots .

If the number and the locations of the basis functions are fixed, the regression coef-
ficients ξ can be obtained by standard maximum likelihood techniques as in parametric
regression models. Figure 10.6 illustrates such a B-spline fit for a Gaussian regression
model with one nonparametric effect of sinusoidal form. Figure 10.6(a) shows a full set of
B-spline basis functions of degree l = 3. In Figure 10.6(b) the basis functions are scaled
according to the corresponding (estimated) regression coefficients ξ̂m. Obviously, basis
functions in regions with many negative (positive) observations are assigned a negative
(positive) weight. Summing the weighted basis functions finally yields the fit presented in
Figure 10.6(c). The true function (a sine curve) is included as a dashed line for comparison.

When using such procedures, the choice of knot locations can have a substantial effect
on the results. With a small number of knots, the estimated curve will be very smooth and
therefore important details may be lost. On the other hand, a large number will lead to a
wiggly estimate that is close to an interpolation of the data. To avoid the difficult task of
choosing the number and position of the knots in an optimal way, Eilers and Marx (1996)
propose to use a large number of basis functions but to penalise differences between
adjacent parameters ξm to guarantee sufficient smoothness. This approach has also been
employed in the illustrative fit in Figure 10.6. The coefficients ξm vary smoothly over the
domain of x, resulting in a reasonable amount of smoothing.

Penalised spline smoothing for nonlinear effects is closely related to the spline smooth-
ing approach discussed in Section 4.1.3 based on natural cubic smoothing splines: the basis
is slightly different, but the difference penalty considered for penalised splines is a simple
approximation to penalties based on integrated squared derivatives. Although penalised
splines cannot be motivated as a solution of an optimisation criterion, they still provide
a versatile alternative smoothing approach. Moreover, optimality of the smoothing spline
in Section 4.1.3 only holds when all distinct observation points are used as knots, which
is only rarely done in practice.
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Figure 10.6 Spatiotemporal models: fitting nonparametric functions with B-splines.
In (c) the dashed line represents the true curve and the solid line the corresponding
B-spline estimate.

From a Bayesian perspective, penalisation of differences of adjacent parameters
corresponds to the assumption of random walk priors for the coefficients. First- and
second-order random walks are defined by

ξm = ξm−1 + um and ξm = 2ξm−1 − ξm−2 + um, (10.8)

where the um are Gaussian error terms um ∼ N(0, τ 2) and diffuse priors are assigned to
the initial values. A first-order random walk penalises deviations of the function f (v)

from a constant value, whereas a second-order random walk penalises deviations from
a function linear in v. The strength of the penalisation is controlled by the variance τ 2

of the error terms. If τ 2 is small, the regression coefficients will be almost deterministic,
resulting in a constant or a linear effect depending on the specific random walk. If, in
contrast, the variance is large, ample deviations from the deterministic trend are allowed
and highly fluctuating functions are obtained. In contrast to unpenalised B-splines, the
compromise between flexibility and fidelity to the data is controlled by one single param-
eter, the smoothing parameter τ 2. Hence, the complex problem of choosing optimal knots
is replaced by the much simpler problem of finding an optimal smoothing parameter. We
will discuss two different approaches to this problem in Section 10.3.4.
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10.3.2 Interaction surfaces

If bivariate interaction surfaces in the spirit of univariate penalised splines need to be
derived, we first have to define appropriate two-dimensional basis functions. A general
way to construct bivariate interactions between two sets of univariate functions is to
consider all pairwise products, i.e. the tensor product of the univariate basis functions.
To be more specific, if we want to model an interaction term f (x, z), a set of bivariate
basis functions can be obtained as

Bjk(v1, v2) = B̄j (v1)B̃k(v2),

where B̄j and B̃k are univariate basis functions defined in the v1 and v2 domain respec-
tively. Figure 10.7 shows two such basis functions, when the underlying univariate bases
are B-spline bases of degree l = 1 and l = 3. Obviously, tensor product B-splines form a
nonradial basis but the amount of nonradiality decreases rapidly with increasing degree.
In the limit, appropriately normalised tensor product B-splines converge to the density of
a standard normal distribution.

Figure 10.7 Spatiotemporal models: surface plots of tensor product B-splines of degree
l = 1 and l = 3.

Based on the bivariate basis functions, nonparametric surface fits can be estimated
in complete analogy to the univariate case described in the previous section. However,
if a smoothness penalty is to be included, bivariate random walks have to be introduced
for the regression parameters. Since the tensor product basis functions are aligned on
a regular grid, it seems natural to consider a set of k nearest locations on the grid as
neighbours of the basis function at hand. Two such neighbourhood definitions are illus-
trated in Figure 10.8, where the neighbours of basis function Bjk are represented as grey

jk jk

Figure 10.8 Spatiotemporal models: neighbourhoods on a regular lattice. The four (eight)
next neighbours of location jk are indicated as grey points.
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dots. Based on these neighbourhoods, a first-order random walk is defined by assuming
that the expectation of the regression parameter at location jk is given by the average
of the regression parameters at adjacent sites and its variance is inversely proportional to
the number of neighbours. We will discuss this in more detail in the following section,
where more general first-order random walks on irregular lattices will be considered for
the construction of spatial smoothness priors. Random walks of higher order on regular
lattices are treated extensively in Rue and Held (2005, Chapter 3).

Of course, interaction surfaces can also be employed to estimate spatial trends, if
longitude and latitude are identified with the interacting covariates. As we will see in
the next subsection, there is also a close correspondence between surface smoothers and
more commonly applied spatial smoothing approaches.

Assuming a bivariate random walk prior for the coefficients of the tensor product basis
functions induces a smoothness prior similar to the univariate case. Again the variance of
the random walk plays a crucial role when determining the interaction effect since it acts
as a smoothing parameter. In our definition, the smoothing parameter is the same for both
the v1 and the v2 directions, but extensions with direction-specific smoothness penalties
can also be defined (see, for example, Eilers and Marx, 2003).

10.3.3 Spatial trends

Although interaction surfaces can in principle be used to estimate spatial effects based
on their x and y coordinates, more specialised approaches have been introduced that
exploit the spatial nature of the problem. We will discuss two of these in more detail.
While the first can be considered an extension of random walks from one dimension to
two, the second explicitly models dependence between the spatial locations in terms of a
correlation function.

In models for trend analysis, random walks for the temporal effect are commonly
applied. If f (t) represents the value of the trend function at time t , the assumption of a
first-order random walk for f (t) is equivalent to assuming

f (t)|f (t − 1), f (t + 1) ∼ N

(
1

2
[f (t − 1) + f (t + 1)],

τ 2

2

)
; (10.9)

i.e. the expectation of f (t) given the neighbours is simply the average of the two adjacent
values f (t − 1) and f (t + 1). To generalise this to the bivariate setting, we first have
to define which points s ′ shall be considered as spatial neighbours of a point s. While
natural definitions exist for data on regular grids (as we have seen in the previous section),
the definition of neighbours is less clear-cut for irregularly spaced observations as in our
example. A simple rule to obtain a neighbourhood is to define two points as neighbours
if their distance drops below a certain value. If ∂s is the set of neighbours of location s

we can generalise the temporal random walk (10.9) to

f (s)|f (s ′), s ′ �= s, τ 2 ∼ N

⎛
⎝ 1

Ns

∑
s′∈∂s

f (s ′),
τ 2

Ns

⎞
⎠ , (10.10)

where Ns = |∂s |. The variance τ 2 again plays the role of a smoothing parameter
controlling the flexibility of the spatial function estimate. Implicitly, (10.10) defines
correlations between locations which are close to each other since it forces adjacent
function evaluations to be of similar magnitude.
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An approach that explicitly considers correlations between locations, commonly
known as kriging in the geostatistics literature, is based on stationary Gaussian random
fields. In this case, f (s) is assumed to follow a zero-mean Gaussian stochastic process
with an intrinsic correlation function ρ(u), where u = ||s − s ′|| is the distance between
two points s and s ′. This means that correlations only depend on the (Euclidean) distance
of two points and not on their specific location and direction. Choosing an appropriate
correlation function ρ(u) is important since the resulting estimates for the spatial effect
inherit properties such as continuity and differentiability from the correlation function
(Stein, 1999, Section 2.4). Several proposals have been made in the geostatistics
literature, among which the Matérn family ρ(u; ν, α) is highly recommended due to its
flexibility (Stein, 1999, page 31).

While evaluation of ρ(u; α, ν) in general requires the numerical evaluation of modified
Bessel functions, simple forms ρ(u; α) are obtained for predetermined values ν = m +
0.5, m = 0, 1, 2, . . . , of the smoothness parameter ν, for example

ρ(u; α, ν = 0.5) = exp(−|u/α|),
ρ(u; α, ν = 1.5) = exp(−|u/α|)(1 + |u/α|),
ρ(u; α, ν = 2.5) = exp(−|u/α|)(1 + |u/α| + 1

3 |u/α|2).

Figure 10.9 displays the first two Matérn correlation functions with ν = 0.5 and ν = 1.5.

Figure 10.9 Spatiotemporal models: surface plots of Matérn correlation functions with
smoothness parameters ν = 0.5 and ν = 1.5.

The scale parameter α controls how fast correlations die out with increasing distance u.
To simplify the estimation procedure, α may be determined in a preprocessing step based
on the rule

α̂ = max
i,j

||si − sj ||/c. (10.11)

The constant c > 0 is chosen such that ρ(c, α = 1) is small (for example, 0.001); i.e.
c specifies the desired effective range of the correlation function. Therefore, the different
values of ||si − sj ||/α̂ are spread out over the u axis of the correlation function and scale
invariance of the estimation procedure is ensured.

The assumption that f (s) follows a Gaussian stochastic process can also be interpreted
as a smoothness prior for the spatial effect. In this case, the inverse of the correlation
matrix of fs , evaluated at the observation locations si , i = 1, . . . , n, acts as a penalty
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matrix, while the variance of the process acts as the smoothing parameter that controls
the influence of the penalty. In simple terms, two function evaluations f (si) and f (sj )

are forced to be close to each other if their correlation is large.
If we compare the tensor product B-spline bases depicted in Figure 10.7 and the

Matérn correlation functions displayed in Figure 10.9, both look very similar. This is not
a coincidence: kriging estimates can be interpreted as surface smoothers based on radial
bases derived from the correlation functions (see Nychka, 2000, for a thorough discussion).
Each of these basis functions is located at an observation point, which can therefore be
considered as one of the knots of the surface smoother. This interpretation in terms of
basis functions also provides the motivation for a dimension reduction technique that can
be applied to reduce the numerical burden associated with estimating Gaussian fields. If
we use only a subset of the original observation locations as knots associated with basis
functions, this leads to low-rank kriging as considered by Kammann and Wand (2003).

Since spatial effects are usually introduced into regression models to account for
spatial correlations induced by unobserved, spatially varying covariates, it can be useful
to split the spatial effect into a spatially correlated (structured) part fstr and a spatially
uncorrelated (unstructured) part funstr:

fspat(s) = fstr(s) + funstr(s).

A rationale is that a spatial effect is usually a surrogate of many unobserved influential
factors, some of which may obey a strong spatial structure while others may be present
only locally. By estimating a structured and an unstructured spatial component we aim
to distinguish between the two kinds of influential factors. The uncorrelated part funstr

may be estimated based on location-specific i.i.d. Gaussian random effects, while Markov
random fields, stationary Gaussian random fields or interaction surfaces can be used for
the smooth spatial effect fstr. In our basic model (10.7) an unstructured spatial effect is
already included via the random intercept bi .

10.3.4 Inference in spatiotemporal models

To estimate the general spatiotemporal model defined in Equation (10.6), it is useful to
express the model in matrix notation. It turns out that each of the predictor components
can be expressed as the product of a design matrix Vj and a possibly high-dimensional
vector of regression coefficients. For example, for penalised splines the design matrix
consists of the basis functions evaluated at the observed values of the covariate and the
regression coefficients are given by the amplitudes of the basis functions. Analogously,
interaction surfaces and spatial effects can be expressed in a similar way. This yields
the expression

D = V1ξ1 + · · · + Vpξp + Vtimeξtime + Vspatξspat + Xβ + ε, (10.12)

where D and ε are stacked vectors of the individual observations and X corresponds to
the usual design matrix of fixed effects.

From a Bayesian viewpoint, model formulation is completed by defining appropriate
priors for the vectors of regression coefficients. While diffuse priors can be assigned to
the thresholds θ(r) (subject to the ordering constraint) and the fixed effects β, informa-
tive smoothness priors are employed for the remaining effects. It turns out that all the
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smoothness priors discussed in Sections 10.3.1 to 10.3.3 can be expressed as multivariate
(partially improper) Gaussian priors of the form

p(ξj |τ 2
j ) ∝ exp

(
− 1

2τ 2
j

ξ ′
jKj ξj

)
, (10.13)

where the precision matrix Kj acts as a penalty matrix that shrinks parameters towards
zero or penalises abrupt jumps between neighbouring parameters. For example, for
penalised splines the precision matrix is given by Kj = D′

jDj , where Dj is a difference
matrix of appropriate order. Hence, the precision matrix leads to the penalisation of
differences of parameters corresponding to adjacent basis functions. For spatial effects,
the precision matrix is either given by an adjacency matrix (Markov random fields) or
as the inverse correlation matrix (kriging).

Having defined priors for the regression coefficients, we still have to specify assump-
tions on the variance parameters τ 2. In an empirical Bayes approach, the variances are
treated as unknown constants, which have to be estimated from the corresponding marginal
posterior. In contrast, fully Bayesian inference assigns additional hyperpriors to the vari-
ances and estimates them based on the joint posterior of all parameters. We discuss
empirical Bayesian inference first and describe how mixed model methodology can be
utilised for estimation. Afterwards, we give a brief description of fully Bayesian inference
based on Markov chain Monte Carlo (MCMC) simulation techniques. Both approaches
are implemented in the public domain software package BayesX (Belitz et al. 2009).

10.3.4.1 Mixed model based inference

The foundation for empirical Bayes inference is a different viewpoint on the model formu-
lated in Equations (10.12) and (10.13). If we ignore the fact that the predictor in (10.12)
in fact describes a semiparametric spatiotemporal regression model, it has a structure
completely equivalent to that of a model with random effects ξj , where prior (10.13)
defines a correlated random effects distribution. Therefore it is tempting to interpret the
spatiotemporal model as a mixed model and to employ mixed model methodology to
estimate it, in particular using penalised likelihood to estimate the regression coefficients
and restricted maximum likelihood for the variance parameters. However, care has to be
taken since the precision matrices of penalised spline and Markov random field priors are
rank-deficient and therefore the corresponding prior distributions are partially improper.

Standard mixed model technology assumes that random effects are uncorrelated as in
the basic model (10.5) for longitudinal data. If the multivariate prior (10.13) is proper, that
is if the precision matrix Kj has full rank, this can be easily achieved by reparametrising
ξj to bj = K

0/5
j ξj , so that bj ∼ N(0, τ 2

j I ). This is the case if the spatial component is
modelled through a GRF kriging prior. More care has to be taken for penalised spline
and Markov random field priors, where the precision matrix is rank deficient and the
corresponding prior (10.13) is partially improper. In this case it is possible to decompose
ξj in reparametrised form into a ‘fixed’ parameter βj with flat prior and a ‘random’
parameter bj with proper Gaussian prior N(0, τ 2

j I ) of dimension rank(Kj ). Details of this
reparametrisation are given in Fahrmeir, Kneib and Lang (2004) for univariate response
models and Kneib and Fahrmeir (2006) for categorical extensions. An extensive treatment
of mixed model based inference in extended spatiotemporal regression models for several
types of responses including survival times is presented in Kneib (2006).
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In classical mixed model terminology, the reparameterised model is a variance
components model with one variance component per nonparametric or spatial term.
Mixed model methodology, adapted to our categorical setting, allows the estimation of
both the regression coefficients based on penalised likelihood and restricted maximum
likelihood (REML) for the variance parameters. As Harville (1974) showed, REML
estimation is equivalent to the maximisation of the marginal posterior of the variance
parameters leading to an interpretation of the derived estimates as empirical Bayes
estimates (see Kneib and Fahrmeir, 2006, for details of the inferential scheme).

10.3.4.2 Inference based on Markov chain Monte Carlo simulation techniques

In a fully Bayesian approach, the variance parameters τ 2
j can be estimated simultaneously

with the regression coefficients ξj by assigning additional hyperpriors to them. The most
common assumption is that the τ 2

j are independently inverse gamma distributed, i.e.
τ 2
j ∼ IG(aj , bj ), with hyperparameters aj and bj specified a priori. A standard choice

is to use aj = bj = 0.001. In some data situations (for example for small sample sizes),
the estimated nonlinear functions fj may depend considerably on the particular choice of
hyperparameters. It is therefore good practice to estimate all models under consideration
using a (small) number of different choices for aj and bj to assess the dependence of
results on minor changes in the prior assumptions.

Efficient sampling schemes for cumulative probit models can be developed through
incorporation of the Gaussian mixed model for the latent continuous defoliation degree
Dit in combination with the threshold mechanism relating Dit to the observed categorical
response Yit . The model and the posterior are augmented with the latent variables Dit ,
which are generated as part of the MCMC sampling scheme. Sampling the Dit is relatively
easy and fast because their full conditionals are truncated normal distributions. The full
conditionals for the fixed effects β and the random effects ξj , given the latent variables and
the other parameters, are Gaussian, and the full conditionals for the variances τ 2

j are again
inverse gamma distributions with updated parameters. Therefore, the MCMC algorithm
can be implemented through Gibbs sampling, without a need for Metropolis–Hastings
steps. Details are given in Fahrmeir and Lang (2001) and Brezger and Lang (2006).

10.4 Spatiotemporal modelling and analysis of forest
health data

Apart from analysing the effects of the covariates given in Table 10.1, we aim to illustrate
the possibilities and the flexibility of our spatiotemporal models for exploring temporal
and spatial trends. In exploratory analysis we found age, inclination of slope and the
density of the forest canopy to be of possibly nonlinear influence on the defoliation
degree, while the remaining continuous covariate effects appeared approximately lin-
ear. Our basic spatiotemporal model is therefore specified by Dit = ηit + εit with the
spatiotemporal predictor

ηit = f1(ageit ) + f2(inclinationi ) + f3(canopyit ) + ftime(t)

+ f4(t, ageit ) + fspat(si) + x ′
it β. (10.14)

Both temporal and spatial trends are included as well as nonlinear main effects of age,
inclination of slope and the canopy density. In addition, motivated by Figure 10.4, an
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interaction term between calendar time t and age is included in the predictor. The resulting
probit model for the categories ‘no defoliation’ (r = 1) and ‘slight defoliation’ (r = 2) of
the observed response Yit is given by

P(Yit ≤ r|ηit ) = (θ(r) − ηit ), r = 1, 2,

and the probability for ‘severe defoliation’ (r = 3) is obtained as

P(Yit = 3|ηit ) = 1 − (θ(2) − ηit ) = (−θ(2) + ηit ).

We compared models with a Markov random field prior, a kriging prior and a bivariate
P-spline prior for the spatial effect. For the Markov random field prior, two observation
plots were considered as neighbours if their distance is less than 1.2 km. For the correlation
function of the stationary Gaussian random field in the kriging approaches, we chose a
Matérn correlation function with ν = 1.5. The two-dimensional P-splines were defined as
cubic tensor product B-splines with 12 inner knots for each direction and a bivariate first-
order random walk penalty. Similarly, the interaction effect between age and calendar time
was modelled using a bivariate cubic P-spline with a first-order random walk penalty but
20 inner knots for each direction. For the univariate nonparametric effects we employed
cubic penalised splines with a second-order random walk penalty and 20 inner knots.

As an extension, we also considered models with linear predictor η̃it = ηit + bi , where
the {bi} are uncorrelated tree- or location-specific random effects. For comparison we also
fitted a model without spatial effects and a purely linear random effects model as in (10.5),
where the nonlinear effects and the interaction are replaced by polynomials up to order
three and all pairwise interactions between the polynomials of age and time. Thus, we
considered the following models:

(M0) A purely parametric GLMM with third-order polynomials for the nonlinear
effects and all pairwise interactions between the polynomials of age and time;

(M1) Model (10.14) with neither a spatial effect nor a random effect;

(M2) Model (10.14) with uncorrelated random effects as the spatial effect;

(M3) Model (10.14) with a Markov random field prior for the spatial effect;

(M4) Model (10.14) with a Kriging prior for the spatial effect;

(M5) Model (10.14) with a bivariate P-spline prior for the spatial effect;

(M6) Model (10.14) with a Markov random field prior plus uncorrelated random
effects;

(M7) Model (10.14) with a Kriging prior plus uncorrelated random effects;

(M8) Model (10.14) with a bivariate P-spline prior plus uncorrelated random effects.

Estimation was carried out using both the empirical Bayes approach based on mixed
model methodology and the fully Bayesian MCMC approach. For the latter, models
including Kriging terms were excluded from the comparison since they would require the
inversion of a full 83×83 matrix in each iteration, leading to quite long execution times.

Table 10.2 summarises several characteristics of the model fit for the various models.
For the empirical Bayes approach, this includes minus twice the log-likelihood, the
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Table 10.2 Spatiotemporal analysis: characteristics of the model fit for models (M0)
to (M8).

Empirical Bayes Full Bayes

Model −2l df AIC GCV dev. pD DIC

(M0) 1280.6 90.2 1461.1 0.64 1280.8 86.0 1452.7
(M1) 1390.7 96.4 1583.4 0.69 1394.4 89.1 1572.6
(M2) 1108.8 123.3 1355.4 0.54 1080.5 119.5 1319.6
(M3) 1119.5 119.4 1358.3 0.54 1089.3 116.8 1323.0
(M4) 1127.1 119.0 1365.1 0.55
(M5) 1140.9 117.2 1375.3 0.56 1117.8 114.2 1346.3
(M6) 1109.2 123.2 1355.6 0.54 1080.8 119.3 1319.4
(M7) 1108.3 123.4 1355.2 0.54
(M8) 1107.5 123.6 1354.8 0.54 1081.3 120.0 1321.3

effective number of parameters in the model (also called the degrees of freedom, see
Section 4.1.4) df , Akaike’s information criterion AIC and the generalised cross-validation
statistic GCV. For the fully Bayesian approach, Table 10.2 includes the posterior deviance,
the effective number of parameters pD and the deviance information criterion (Spiegelhal-
ter et al., 2002). Obviously, including a spatial effect leads to an improved fit, regardless
of the chosen parametrisation. Differences between the spatial models are smaller, but
there seems to be a preference for models including an unstructured spatial effect or
consisting only of an uncorrelated random effect. Differences between these four models
are very small both in terms of AIC, GCV and DIC. There is also clear evidence that
inclusion of nonparametric effects instead of simple polynomials results in a significantly
better model fit.

Taking a closer look at the estimation results for the spatial effects reveals that in
models with only a structured spatial effect the estimates are quite close to those obtained
with only an uncorrelated plot-specific random effect. Probably this is due to the fact that
our data set already contains several covariates describing forest site conditions that vary
smoothly over the spatial domain. Therefore the remaining spatial effect mostly captures
tree-specific, highly fluctuating unobserved covariates. In accordance with this hypothesis,
the estimated structured spatial effect is generally quite small in models (M6), (M7) and
(M8) where both an unstructured and a structured effect are included. For the Kriging
and the bivariate P-spline prior in (M7) and (M8) the structured spatial effect is almost
zero because these priors are in favour of smooth spatial effects or surfaces. In contrast,
model (M6) reveals both an unstructured and a structured pattern for the spatial effect,
although the structured effect is still small compared to the unstructured part. Therefore
we will mostly concentrate on model (M6) in the following presentations, although it is
not the best model according to AIC and DIC.

Figure 10.10 displays the empirical Bayes estimates for the spatial effects obtained in
models (M2), (M3), (M5) and (M6). Obviously, results obtained with only a single term
for the spatial effect are very close to each other, although no spatial correlation is assumed
in model (M2). In model (M6), we obtain a clearer discrimination between two types of
spatially varying influences. While observation plots in the westerly and the northern part
of the observation area have a slightly negative structured spatial effect, positive effects
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Figure 10.10 Posterior mode estimates of the spatial effects.

are observed in the easterly and the southern part. This corresponds to more healthy
circumstances in the northwestern part of the map. The unstructured, location-specific
spatial effect in model (M6) gives hints on locally varying influences on the health status
of beeches. For example, adding up both effects, we recover the less favourable health
status around Rothenbuch found in the descriptive analyses.

In contrast to models based on MRFs and random effects where the spatial effect is
only defined at the observation locations, bivariate penalised splines and GRFs allow for
the estimation of spatial surfaces. This is illustrated in Figure 10.10 for model (M5) with
the spatial effect estimated by a bivariate P-spline. Although care has to be taken when
interpreting the spatial effect in regions without any observations, the estimated surface
still allows the progression of the spatial effect between two locations to be judged.
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The estimated linear effects of the continuous and categorical covariates in the vector
xit were rather similar for the various models. Table 10.3 contains the estimation results
from model (M6) (for a definition of the covariates compare Table 10.1). The defoliation
degree is not affected by elevation above sea level, depth of soil layer or soil pH. This
may be particularly surprising for the latter, but the reason is that the pH values do
not differ too much and are all below a value of 7, implying acidic soil for the whole
observation area. The effects of stand type and fertilisation give some evidence for their
expected impact on health status, despite not being formally significant. The effects of
the thickness of the humus layer and the level of soil moisture are significant and reveal
an interesting pattern. From humus levels 1 to 3 there is an increased tendency towards
defoliation; the effect is then roughly constant for the higher levels. The thickness of
the humus layer tends to increase from pure broadleaved forests over mixed forests to
coniferous forests. Thus the thickness of the humus layer can be regarded as a proxy for
both stand and soil conditions: this leads to the interpretation that in pure beech stands the
risk for defoliation is lower than in forests with a higher proportion of other tree species.

Table 10.3 Posterior mode estimates: Fixed effects in model (M6).

Variable β̂j std. dev. p-value 95 % ci

θ(1) 0.046 1.568 0.977 −3.027 3.120
θ(2) 3.603 1.577 0.022 0.511 6.695
elevation 0.001 0.003 0.741 −0.005 0.007
soil −0.020 0.015 0.172 −0.049 0.009
ph −0.037 0.212 0.860 −0.452 0.377
stand 0.253 0.147 0.086 −0.036 0.541
fertilised −0.429 0.268 0.108 −0.954 0.095
humus1 −0.261 0.108 0.015 −0.472 −0.051
humus2 −0.135
humus3 0.139 0.086 0.105 −0.029 0.308
humus4 0.135 0.102 0.185 −0.064 0.334
humus5 0.122 0.142 0.391 −0.157 0.400
moisture1 −0.597 0.320 0.061 −1.224 0.029
moisture2 0.185
moisture3 0.412 0.229 0.071 −0.037 0.862
saturation1 0.430 0.327 0.188 −0.210 1.070
saturation2 −0.397
saturation3 −0.366 0.344 0.288 −1.040 0.309
saturation4 0.333 0.445 0.455 −0.540 1.205

Similarly, the results for the level of soil moisture may be somewhat unexpected at
first glance, showing higher defoliation at plots with better water availability. As shown in
Figure 10.2 there was a peak of defoliation in the 1980s, most probably triggered by the
extremely dry summer in 1983. Trees growing on dryer site conditions should be more
adapted to drought than trees on more moist sites normally not suffering from drought.
Thus the drought in 1983 may have been more harmful for beech trees on normally moist
sites, leading to the results calculated for the covariate moisture in Table 10.3.
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Figures 10.11 and 10.12 display the posterior mode estimates of the nonlinear effects
obtained in model (M6) that combines an MRF prior and uncorrelated random effects.
Additionally included are results from an autoregressive version of model (M3), where
indicators formed of lagged response variables Yi,t−1 are included as additional covariates
(Figure 10.11) and model (M1) that neglects spatial correlations (Figure 10.12). In model
(M6) the age effect is rapidly increasing for young trees, reaching a maximum at an
age of 55 years. Afterwards, it is decreasing for a short period followed by a slight
increase up to an age of about 210 years. The estimated time trend recovers the empirical
trend of category 2 shown in Figure 10.2. Therefore, model (M6) may be well suited
to distinguish between healthy trees and defoliated trees but may not discriminate well
between slightly and severely defoliated trees. This is due to the assumption of one
common time trend in model (10.14). We will investigate this further below. Inclination
of slope turns out to have an almost linear effect and is also not significant. In contrast, the
effect of canopy density shows significant deviations from a horizontal line. Obviously,
an increased canopy density leads to higher probabilities for lower categories and, hence,
for a more healthy state of the trees. Note that this conclusion is specific for beeches and
does not necessarily hold for other tree species.
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Figure 10.11 Posterior mode estimates for the time trend and the nonlinear age effect.

While the estimated nonparametric effects remained quite stable as long as any spatial
effect was included in the model, some important deviations can be found when the
spatial effect is excluded or when an autoregressive component is added. In the former
case, the nonparametric estimates become more wiggly, as demonstrated in Figure 10.12
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Figure 10.12 Posterior mode estimates: nonlinear effects of inclination of slope and
density of the forest canopy.

for the effects of inclination and canopy density. Obviously, the nonparametric effects
absorb some of the influences that are otherwise covered by the spatial component. The
inclusion of an autoregressive term leads to less pronounced nonparametric effects, as
shown for age and the calendar time in Figure 10.11. This is due to the effect that the
lagged variable Yi,t−1 already contains quite a lot of information on Yit and therefore less
variation is left that is to be explained by covariates. Hence direct modelling of spatial
and temporal correlations is to be preferred if, as in our application, the emphasis is on
covariate effects and not on prediction.

Figure 10.13 shows the estimated interaction effect between calendar time and age
from model (M6). Apparently, young trees were in a poorer health state in the 1980s
but recovered in the 1990s, unlike older trees which showed the contrary behaviour. A
possible interpretation is that it takes longer until older trees are affected by unfavourable
environmental circumstances while younger trees are affected more quickly but adapt as
they grow older. The interaction effect appeared to be stable with respect to the spec-
ification of the spatial effect but disappeared when including lagged realisations of the
response. Again the explicit modelling of the dependency structure instead of a condi-
tional autoregressive modelling leads to additional insight into influences of covariates on
health status.

For comparison, Figure 10.14 shows the estimated nonlinear and spatial effects from
model (M6) obtained with fully Bayesian inference. The nonlinear effects are slightly
more pronounced in this case: in particular, the effect of inclination shows somewhat more
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Figure 10.13 Posterior mode estimates: interaction effect in model (M6).

nonlinearity. In addition, the structured spatial effect has a wider range. This corresponds
to our experience from many other analyses with simulated and real data: fully Bayesian
inference tends to yield higher variance estimates, implying somewhat rougher surfaces.

As a next step, we take a more detailed look at the estimated time trend. Figure 10.2
gives clear evidence that the averaged trend for severe defoliation is different from the
trends for the two other categories, while model (10.14) only allows for a common time
trend ftime(t). Because the majority of the data are from the two other categories, the
estimated trend in Figure 10.11 resembles the corresponding average trends in Figure 10.2
but neglects the different shape of the trend for severe defoliation. We can deal with this
issue by introducing category-specific trends f

(1)
time(t) and f

(2)
time(t) in the probit model, i.e.

we assume
P(Yit ≤ r|.) = (θ(r) − f

(r)
time(t) − η∗

it ), r = 1, 2,

where η∗
it is the predictor without the global time trend ftime(t). It follows that

P(Yit = 3|.) = (−θ(2) + f
(2)
time(t) + η∗

it ).

While such extensions are conceptually easy to define, complicated constraints on the
parameters in the model arise since the inequality

θ(1) − f
(1)
time(t) < θ(2) − f

(2)
time(t) (10.15)

has to be fulfilled for every value of t . Especially in sparse data situations, numerical
problems are likely to be encountered due to the failure of (10.15).

Figure 10.15 shows the posterior mode estimates for the category-specific time trends.
While the estimate for f

(1)
time(t) is almost identical to the global trend in the previous
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analyses, the estimated trend for severe defoliation reflects the shape of the averaged trend
in Figure 10.2. We conclude that it may be generally useful to consider the possibility
of category-specific effects in cumulative regression models for categorical responses.
With the relatively sparse data at hand, however, we could not model or identify further
covariate-specific effects.
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ACF, see autocorrelation function
additive models, see also smoother,

140–142, 269
with autocorrelation, 149, 316
backfitting algorithm, 142–144,

273–274
comparison of, 136–138, 144–146,

276–277
approximate F test, 136
quadratic forms test, 137, 145,

277
significance trace, 138

degrees of freedom, 143, 274, 276
generalised, 141
and interactions, 141
projection matrices, 142–143,

273–274
for quantiles, 164
smoothing matrices, 142, 273
variance estimation, 143, 275–276

AIC, 90, 115–116, 182, 183, 195, 325
alkalinity, Round Loch of Glenhead

see data sets
analysis of variance, 15, 56

for model comparison, 88
analysis strategy, choice of, 26
anomalies, 83, 84
ANOVA see analysis of variance
AR(1), see also process, autoregressive,

97
ARMA, see process, ARMA
assumptions

checking, see plots, residual
consequences of failure, 68–69
initial, 26

transparent, 61
autocorrelation, see also autocorrelation

function 14, 30
coefficient, 31
Durbin–Watson test for, 66
effects of, 14

on estimation, 68, 275, 316
handling, 97–102, 119–121,

148–149, 165, 260, 290,
316–317

portmanteau test for, 182–183
autocorrelation function

partial, 175–176
sample, 31–34

computation of, 32
estimator of theoretical ACF,

35, 172
for irregularly

spaced data, 35
interpretation of, 32–33
limits for, 32
and missing data, 32
and model identification, 175
and seasonality, 33, 312
and trends, 33

theoretical, 34, 172
autocovariance, 31

function, 172
autoregression, see also process,

autoregressive
generalized, 230
integer-valued, 230
nonlinear, 229

auxiliary information, use in analysis,
16–18, 82
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backfitting, see additive models
backshift operator, 190, 203, 208, 211
bandwidth, see also kernel 129
basis, 130, 154, 239

Fourier, 130, 154
Legendre polynomial, 292, 296
spline, 131, 341
wavelet, 154–155

Bayes estimator, 81
Bayesian inference, 17, 81–82

in spatiotemporal models, 346–347
for structural models, 219, 230

Bayesian model averaging, 188
beech (fagus sylvatica), 333–334

damage categories, 334
trends in health status, 354–357

BLUP, see prediction, best linear
unbiased

bootstrap, 120–121, 164
block, 121, 147
nonparametric, 121
for nonparametric regression,

137–138, 145
number of samples, 120
parametric, 120–121
prediction intervals, 117–118, 188
test for changepoint, 110

Box–Cox transform, 96–97
boxplots, 28–30

construction of, 28–29
effect of different group sizes, 30
outliers in, 30
purpose of, 28

Brownian motion, 113, 206
fractional, 207

CCF see cross-correlation function
censoring, 257–260

and autocorrelation, 260
and extremes, 259
handling, 258–260
limit of detection, 257

changepoints, see also discontinuity
detection, 108–111

failure of standard theory, 109,
111

implications for resource
management, 284

in variance, 111

multiple, 111
tests for, 109–110

Choleski decomposition, 99, 272
Cochrane–Orcutt method, 98–99
coefficient of determination, see R2

cointegration, 201
collinearity, 87, 312–314

handling, 88, 323
comprehensive R archive network, 19
conditional models, see lagged

response models
control chart, 56
convolution theorem, 48–49
Cook’s distance, 77, 116
correlation

Pearson coefficient of, 15, 31
spatial, see also variogram, 240,

290–291, 319–320, 325
temporal, see autocorrelation

correlogram, see also autocorrelation
function, 31

residual, 66, 182
covariates, 82

categorical, 83–84
choice of, 88–91, 144–146
correlation between, 87
lagged values of, 83
orthogonal, 87

CRAN, see comprehensive R archive
network

credible intervals, 81
cross-correlation function, 38–41,

244
interpretation of, 39
wavelets as alternative to, 159

cross-validation, see smoothing
parameter, choice of

curse of dimensionality, 140
Cusum

chart, 56
test for changepoint, 110

cycles, 106–108
approximate, 172, 202,

204
in ecological populations, 192
estimation of frequency, see

periodogram analysis
phase of, 85
test for, 107
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Darling Range, 285
data quality, see also inhomogeneities;

missing data, 25–26,
304

recording resolution, 286
data sets

on website, 20
alkalinity in the Round Loch of

Glenhead, 10–12
exploratory analysis, 39–41
models for, 91–93, 102–105

Dutch wind speed, 6–7, 256
exploratory analysis, 26–27,

29–30, 33–34, 237–238
smoothed, 43–44, 134–135
STL decomposition, 152–154
trend models, 134–135,

138–140, 146–150, 164–166
wavelet analysis, 157–159

East Atlantic Jet, model for, 203–204
North Sea haddock, 8–10

model diagnostics, 66–67,
78–79

periodogram analysis, 107
prediction, 10, 69, 75–76,

188–189, 198–199
trend models, 63–65, 183–185,

196–199
ozone in eastern England, 12–14

exploratory analysis, 37–38
model for, 222–228

degrees of freedom, 88, 115
effective, 132–133, 274,

276
for error, in nonparametric

regression, 135
residual, 65

deletion
of model terms, 90
of observations, 77

dependence, see correlation
design matrix, 70

for penalised splines, 346
detection, limits of, see censoring
detrending, see trend, removal of
deviance, 115

analysis of, 115
quasi, 118
scaled, 115

differencing, 194
fractional, 203
as high-pass filter, 195

discontinuity detection, see also
changepoints, 161–162, 284

distributions
beta-binomial, 300
exponential family, 112–113
gamma, 289

relation to χ2, 119
generalised extreme value, 251
generalised Pareto, 253
inverse Gaussian, 113
von Mises, 141

downscaling, 18
Durbin–Levinson algorithm, 175
Durbin–Watson test, 66

EAJ, see East Atlantic Jet
East Atlantic Jet, see also data sets, 201
effective sample size, 97
EMEP programme, 267–268
EOF analysis, see principal

components analysis
errors

in data, 25, 28
unexplained variation, 63, 98

eutrophication, 307–309
exploratory analysis, purpose of, 25–26
extrapolation, see also prediction, 6

difficulties with, 10, 17, 76
into tails of distribution, 251
model based, 17–19, 83, 117–166,

118
necessity of, 17
scenario based, 83

extremes, 5, 43, 56, 113, 250–257
block maxima, 251–253
point process characterisation,

256–257
return period, 251

and trends, 253
threshold exceedances, 253–255

and autocorrelation, 254–255
choice of threshold, 254
covariate-dependent, 255

trends in, 252–253,
256



362 INDEX

F test, 65, 88–90, 115
approximate, 136–137, 144, 276

dependence-adjusted, 149, 276
factor analysis, 243

dynamic, 212, 324–326
with short records, 329

stationarity requirement, 243–244
factors, 84

levels of, 84
fast Fourier transform, 32
FFT, see fast Fourier transform
filter, see also smoother; wavelets

band-pass, 54
circular, 51
design of, 49
effect on polynomials, 45–46,

195–196
end effects, 41, 44, 50–51, 130, 138
high-pass, 52, 195
induced structure, see preprocessing,

dangers of
Kalman, see structural models
linear, 41, 45–54
low-pass, 49
Spencer’s 15-point, 45
squared gain, 49

Fisher, Ronald, 15
fitted values, 65

matrix representation, see also hat
matrix, 72, 143, 273

forecasting, see prediction
forest, health of, see beech (fagus

sylvatica)
Fourier, see also basis

coefficients, 46
frequencies, 46, 106
theory, 46–48

GARCH models, 95, 229
general linear process, 179
generalised estimating equations, 119,

241, 338
generalised linear models, 62

(in table), 95, 97, 111–120,
229

adjusted dependent variate, 113
dispersion parameter, 112

estimation of, 114
linear predictor, 111

link function, 111
for rainfall, 289
variance function, 112

GEOmon project, 12
GLM, see generalised linear models
GLS, see least squares, generalised
graphs

aspect ratio, effect of, 26
guidelines for preparation, 27–28

haddock, North Sea, see data sets
hare, snowshoe, 192
harmonics, 85
hat matrix, 72, 128
heteroscedasticity, 316, 323–324

effect of , 68
handling, 94–96, 98, 118–119
types of, 95

hierarchical models, 240
homoscedasticity, 66
hypothesis tests, see tests

increments, 206
indicator variables, 83
influential observations, 76–78, 100

handling, 79
information criterion

Akaike’s, see AIC
deviance, 350

inhomogeneities, 12, 26, 236
innovations, 180–182

algorithm, 180, 203
and prediction, 186–187
standardised, 182

integrated water supply scheme, 283
interaction, see also varying coefficient

models, 86–87, 92, 336
and measurement units, 86, 89

interdecadal variability, 202, 204
interventions, 108–109
invertibility, 178–179, 182, 186

Kendall’s τ , 55
kernel, 129, 270

Gaussian, 129, 270
periodic, 141
tricube, 151
variable bandwidth, 130,

151
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LAD, see least absolute deviations
lag, 31
lagged response models, see also

response, lagged, 338–339
comparisons between, 101
interpretation of, 101, 297–300, 322

latent variables, 337
least absolute deviations, 79, 163
least squares, 70–71

estimators, 70, 71
properties of, 71, 96

generalised, 99–101, 186, 241
iteratively weighted, 113, 144
matrix approach to, 70–71
and maximum likelihood, 80, 81
nonlinear, 105–106
optimality, 63, 68, 96, 99, 205
penalised, 130–131
for time series models, 177–179
versus LAD, 79
weighted, 95–96, 99

locally, 129
leverage, 77, 116
likelihood ratio statistic, 115

adjusted for dependence, 291
Ljung–Box–Pierce statistic, 183
local level model, 208

as ARIMA(0,1,1), 209
signal-to-noise ratio, 221

local linear trend model, 208
local mean, see Nadaraya–Watson

estimator
Loess, see Lowess
log-likelihood, 80

diffuse, 218
logistic regression, 112, 289
loglinear model, 112
Lowess, 66, 151–152
Lynx, Canadian, 192

main effects, 86
interpretation of, 86, 89

Mann–Kendall test, see also Theil–Sen
estimator, 54, 109, 259

assumptions, 56
partial, 55
seasonal, 55

map
bubble, 236

contour, 236
grey-scale, 236

marginal models, 338
marginality principle, 89
Markov chain Monte Carlo, 82, 348
matrix

design, see design matrix
idempotent, 72
identity, 71
influence, see hat matrix
information, expected, 81, 114, 201,

218
and time trends, 114–115

smoothing, 128, 272
analogue of hat matrix, 128

Toeplitz, 98
trace of, 132

maximum likelihood estimation, 15,
79–81

adjusted for dependence, 290–291
for censored data, 258
for fractionally integrated models,

203
for inhomogeneous Poisson

processes, 247–248
and generalised least squares, 99,

180, 181
for generalised linear models,

113–116
large sample theory, 81, 114–116
for linear trend model, 79–80
optimality, 79, 177
restricted, 240, 323, 348
for structural models, 217–218
for time series models, 179–182

likelihood factorisation,
119–120, 182, 217

of variances, 80, 114, 240
MCMC, see Markov chain Monte

Carlo
mean-shift model, 109
median regression, 79, 162, 163
method of moments, 114
min/max autocorrelation factor, 244
missing data, 12–13, 25, 152

effect of, 286–287
handling, 26–27, 32, 35–37, 54,

90–91, 215, 218
possible reasons for, 27, 30, 287
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mixed effects models, 240, 339–340,
347–348

model, linearity of, 62
model-building, guidelines for, 18–19,

90, 89–310, 323
modelling

empirical, 3
framework, statistical, 15, 57, 61
process based, 3, 17

monitoring, 6
legislation, 309
online, 56, 110

moving average
process, see process, moving average
smoother, see smoother

Nadaraya–Watson estimator, 130, 222
nested models, 88, 115, 144–145, 278
normal equations, 70, 71
normalisation, see also seasonality, 15,

83

offset, 248
origin, choice of, 69
orthogonal polynomials, 87–88
outliers, see also influential

observations, 26, 29
overdifferencing, 194–195
overdispersion, 246, 249
ozone, eastern England, see data sets

parameters, 62
Pearson, Karl, 15
periodicity, see cycles
periodogram analysis, 106–107

Fisher’s test, 107
limitations of, 107–108

permutation tests, 121, 145
phase, see cycles
plots, see also graphs; maps

quantile–quantile, 66
residual, 65–66, 83, 294–295

for discrete data, 116–117
time series, 26–27

point process, 245–250
clustered, 249–250
inhomogeneous Poisson, 246–248,

256
diagnostics for, 249

intensity estimation for,
246–248

marked, 250
Poisson, 246–248
self-exciting, 249
spatial, 249

population
age structure, 199
dynamics, 191–193, 212–213
growth, 62, 105

posterior distribution, 81
calculating, 81–82

Prais–Winsten transformation, 100, 180
pre-whitening, 39, 185
predator–prey model, 191–193, 244
prediction, see also extrapolation

with ARMA models, 186–188
difference equation form, 186

best linear unbiased, 215
effect of model uncertainty, 188
error, properties of, 75, 187
intervals, 75, 118, 187

bootstrap-based, 117–118
for GLMs, 117–118

lead time, 186
long-term, 18, 188, 195, 202,

223–224, 228
with nonparametric models, 228
for nonstationary processes, 195
out-of-sample verification, 188, 189
for stationary processes, 187–188,

204
with structural models, 213–214

preprocessing, dangers of, 49, 54, 83,
183

principal components analysis, 241–243
loadings, 242
stationarity requirement, 243–244

prior distribution, see also auxiliary
information, use in
analysis, 81

effect on results, 82
noninformative, 82
random walk, 342
spatial, 343–346

process
AR(1), ACF of, 98, 173, 176
AR(2), ACF of, 173, 177
ARIMA, 194–195
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effective sample size, 195
ARMA, 174–175

ACF of, 174–175
contaminated, 211, 226
seasonal, 175

ARMA(1,1), ACF of, 174–175, 177
ARMA(2,1), 192–193
autoregressive, 171–173

ACF of, 173, 175
quasi-cyclical behaviour, 172,

173
stationarity of, 172–173

CAR(1), 206–207
difference–stationary, 194
fractionally integrated, 203

ACF of, 203
Gaussian, 240, 344
intrinsic, 36
long memory, 204–205, 207

mechanisms for, 205
Markov, 297
moving average, see also

invertibility, 174
ACF of, 174
invertibility of, 179
PACF of, 175

multivariate, 244–245
Ornstein–Uhlenbeck, 206–207
point, see point process
stationary, 34–35

models for, 171–175, 202–205
trend–stationary, 180
vector ARMA, 244
Wiener, see Brownian motion

quantile regression, see also extremes,
162–166, 255

linear, 162–164
model fitting, 162–164
nonparametric, 164

quasi-likelihood, 118

R2, 64–65
random effects, 239–240, 339–340
random variables, data as values of, 4,

80
random walk, see also Brownian

motion, 193–194,
(in figure), 200, 206, 342

bivariate, 344
second order, 342

reduced model, 88
regression, see also median regression;

quantile regression; trend,
linear

cumulative, 338
dynamic, 211
for spatial data, 239–240
function, 62

additive, 141
local linear, 129–130, 270

and autocorrelation, 272–273
bivariate, 272
and ordinary least squares, 130

logistic, 112, 289
with long-memory errors, 205
multiple, 62 (in table), 82–83
multivariate, 244–245
nonparametric, see also smoother,

127–128
and structural models, 219–222

principal components, 88
semiparametric, 142
spatiotemporal, 341, 340
stepwise, 90

REML, see maximum likelihood
estimation, restricted

residual sum of squares, see also
deviance, 72, 88, 135

dependence-adjusted, 275
residuals, 65

absolute, 66
deviance, 116
for generalised least squares,

100–101
for GLMs, 116–117
partial, 142, 143
Pearson, 116
properties of, 72–74, 140
pseudo, 135
raw, 116
squared, 66
standardised, 74, 182, 218

multivariate, 219
for time series models, 182
for weighted least squares, 96

response, 82
lagged, 101–102, 119, 291–292
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response, (continued )
ordinal, 336–338

robust estimation, 79, 151
Round Loch of Glenhead, see data sets
RSS, see residual sum of squares

sandwich estimator, 98, 290–291
scatterplot, 27, 38
seasonal adjustment, see seasonality,

removal of
seasonal–trend Lowess, see STL

decomposition
seasonality

Fourier representation of, 84–85
handling, 83–85
removal of, 30, 52–54, 83, 313

semivariogram, see variogram
serial dependence, see autocorrelation
smoother, see also additive models

approximate F test
dependence-adjusted, 149, 276

bias and autocorrelation, 274
bias–variance trade-off, 132,

270–271
circular, 141, 271–272, 320
Kalman, see structural models
kernel, 129
linear, 128
local linear, see regression, local

linear
local polynomial, 42–43
model comparison, see additive

models, comparison of
moving average, 41–42, 128
reference bands, 138, 145
spline, 130–131, 220, 341

mixed model representation,
133, 149

and ordinary least squares, 131
variability bands, 136, 144

smoothing parameter, choice of,
132–134, 274, 281

AIC based, 140
cross-validation, 132
effect of autocorrelation, 132, 149,

157
effect on tests, 138, 145
effective degrees of freedom, 133
informal, 134

model based, 133–134, 220, 342
smoothing, fixed-interval, see structural

models, Kalman smoother
SO2, see sulfur dioxide, emissions of
software packages

BayesX, 82
Brodgar, 310
GLIMCLIM, 291
OpenBUGS, 82
R, 19
WinBUGS, 82

spectral density, 204
spectrum, line, see also periodogram,

48
splines, 131, 141, 341

bivariate, 343
cyclical, 141
and Kalman smoother, 220
knots, 131, 341

number of, 133
spurious regressions, 115, 199–201
standard errors, 71

adjusted for autocorrelation, 97–98,
148–149, 276

adjusted for spatial dependence,
290–291

incorrect, 201
likelihood based, 81
for nonparametric regression,

135–136, 144
prediction, 76 (in table)
of trend estimate, 76 (in table)

standardisation, see normalisation
stationarity, see also process, 202

of unexplained variation, 98,
207

STL decomposition, see also data sets;
Lowess, 54, 152, 222

stochastic differential equations, 207
structural models, 207–209

estimation for, 217–218
Kalman filter, 213–216

initialising, 215–216
Kalman smoother, 216–217
nonlinear, 230
reduced form, 209, 211
state space representation, 209–213

measurement equation, 210
state vector, 209
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transition equation, 210
sulfur dioxide, emissions of, 10,

267–268
survival analysis, 259

t test, 15
for regression coefficient, 63, 87–88
in time series models, 182

tensor product, 343
tests

for autocorrelation, see
autocorrelation

for trend, 54–56, 63
interpreting, 16, 56–57, 68, 200, 238
likelihood ratio, see likelihood ratio

statistic
post hoc, 57
power of, 55–56, 145

Theil–Sen estimator, 55, 259
time series

classical decomposition, see also
STL decomposition, 54

irregularly spaced, 27, 35–37, 85,
151, 205–207, 211, 245

model fitting, see least squares;
maximum likelihood

models, see process
multisite, 235–241

borrowing strength, 235, 289,
319

combining, 235–236
space-for-time, 235

multivariate, 210, 241–245
transformation, 9, 28, 94–97, 146, 268,

287
Box–Cox, 96
and censoring, 258
effect on trend, 95
Prais–Winsten, 100

trend
common, 243, 321, 324–325
definitions of, 4–5
deterministic, 62, 228
in extremes, see extremes
function, 62

nonparametric, 127
linear, 62 (in table), 63–69, 258

common, 245
differenced, 196

extrapolation, 74
ill-defined, 166, 185
slope estimator, precision of, 72

logistic, 62 (in table)
and long memory, 205
as low-frequency variation, 47
in mean, 4–5
model for, see also regression, 61,

127
parametric, 62

nonlinear, 62, 105–111, 323
in percentiles, see quantile regression
removal of, 51–52
in reservoir inflows, 284 (in figure)

reasons for, 284–285
sigmoid, 105
spatial, 4, 344–346, 350–351
stochastic, 171
tests for, see tests
time-varying, 207–208

trend analysis
definition of, 3
reasons for, 5–6

TRIX, 309
common trends in, 322, 326–327
multistation models for, 320–321

trophic index, see TRIX

UK acid waters monitoring
network, 10

uncertainty, assessment of, 18
underdispersion, 249
units of measurement, 89, 120

variance inflation
factors, 87, 312–314

variance, residual, 64
variogram, 35–37, 207

cloud, 36
nugget, 226, 319,

340
relation to ACF, 36
residual, 207
sill, 37

varying coefficient models, 160–161,
229, 239

volatility, 95

wavelet transform
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wavelet transform (continued )
discrete, 155

maximal overlap, 159
wavelets, see also data sets, Dutch

wind speed, 154–159, 161
and discontinuity detection, 157
end effects, 156, 159
extremal phase, 156
least asymmetric, 156
and long memory, 205
mother wavelet, 155
scaling coefficients, 155

scaling filter, 155
shrinkage, 157

threshold choice, 157
and trends, 157

white noise, 32, 35, 63
in continuous time, 206
line spectrum of, 48

wind speed, Dutch, see data sets
WLS, see least squares,

weighted

Yule’s pendulum, 173
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